Relevant Categories and Partial Functions
Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 17 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A relevant category is a symmetric monoidal closed category with a diagonal natural transformation that satisfies some coherence conditions. Every cartesian closed category is a relevant category in this sense. The denomination \emph{relevant} comes from the connection with relevant logic. It is shown that the category of sets with partial functions, which is isomorphic to the category of pointed sets, is a category that is relevant, but not cartesian closed.
Classification : 03B47 03F52 03G30 18D10 18D15
Keywords: symmetric monoidal closed categories, diagonal natural transformation, intuitionistic relevant logic, partial functions, pointed sets
@article{PIM_2007_N_S_82_96_a2,
     author = {Kosta Do\v{s}en and Zoran Petri\'c},
     title = {Relevant {Categories} and {Partial} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {17 },
     publisher = {mathdoc},
     volume = {_N_S_82},
     number = {96},
     year = {2007},
     zbl = {1164.03002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2007_N_S_82_96_a2/}
}
TY  - JOUR
AU  - Kosta Došen
AU  - Zoran Petrić
TI  - Relevant Categories and Partial Functions
JO  - Publications de l'Institut Mathématique
PY  - 2007
SP  - 17 
VL  - _N_S_82
IS  - 96
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2007_N_S_82_96_a2/
LA  - en
ID  - PIM_2007_N_S_82_96_a2
ER  - 
%0 Journal Article
%A Kosta Došen
%A Zoran Petrić
%T Relevant Categories and Partial Functions
%J Publications de l'Institut Mathématique
%D 2007
%P 17 
%V _N_S_82
%N 96
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2007_N_S_82_96_a2/
%G en
%F PIM_2007_N_S_82_96_a2
Kosta Došen; Zoran Petrić. Relevant Categories and Partial Functions. Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 17 . http://geodesic.mathdoc.fr/item/PIM_2007_N_S_82_96_a2/