Fin-set: a Syntactical Definition of Finite Sets
Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 155
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We state Fin-set, by which one founds the notion of finite sets in a syntactical way.
Any finite set $\{a_1,a_2,\dots,a_n\}$ is defined as a well formed term of the form
$S(a_1+(a_2+(\cdots+(a_{n-1}+a_n)\cdots)))$, where $+$ is a binary and $S$ a unary operational symbol.
Related to the operational symbol $+$ the term-substitutions (1) are supposed.
Definition of finite sets is called syntactical because by two algorithms Set-alg and Calc (below)
one can effectively establish whether any given set-terms are equal or not equal.
All other notions of finite sets, like $\in$, ordered pair, Cartesian product,
relation, function, cardinal number are defined as a corresponding term.
Each of these definitions is recursive.
For instance, $\in$ is defined by
\begin{align*}
\in S(a_1)\quad\text{iff}\quad x=a_1\\
\in S(a_1+\cdots+a_n)\quad\text{iff}\quad x=a_1 \text{ or } x\in S(a_2+\cdots+a_n)\\
\notin\emptyset\quad (\emptyset\text{ denotes the empty set})
\end{align*}
@article{PIM_2007_N_S_82_96_a16,
author = {Slavi\v{s}a B. Pre\v{s}i\'c},
title = {Fin-set: a {Syntactical} {Definition} of {Finite} {Sets}},
journal = {Publications de l'Institut Math\'ematique},
pages = {155 },
publisher = {mathdoc},
volume = {_N_S_82},
number = {96},
year = {2007},
zbl = {1164.03012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2007_N_S_82_96_a16/}
}
Slaviša B. Prešić. Fin-set: a Syntactical Definition of Finite Sets. Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 155 . http://geodesic.mathdoc.fr/item/PIM_2007_N_S_82_96_a16/