Fin-set: a Syntactical Definition of Finite Sets
Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 155 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We state Fin-set, by which one founds the notion of finite sets in a syntactical way. Any finite set $\{a_1,a_2,\dots,a_n\}$ is defined as a well formed term of the form $S(a_1+(a_2+(\cdots+(a_{n-1}+a_n)\cdots)))$, where $+$ is a binary and $S$ a unary operational symbol. Related to the operational symbol $+$ the term-substitutions (1) are supposed. Definition of finite sets is called syntactical because by two algorithms Set-alg and Calc (below) one can effectively establish whether any given set-terms are equal or not equal. All other notions of finite sets, like $\in$, ordered pair, Cartesian product, relation, function, cardinal number are defined as a corresponding term. Each of these definitions is recursive. For instance, $\in$ is defined by \begin{align*} \in S(a_1)\quad\text{iff}\quad x=a_1\\ \in S(a_1+\cdots+a_n)\quad\text{iff}\quad x=a_1 \text{ or } x\in S(a_2+\cdots+a_n)\\ \notin\emptyset\quad (\emptyset\text{ denotes the empty set}) \end{align*}
Classification : 03E30
Keywords: finite set, algorithm, syntactical definition
@article{PIM_2007_N_S_82_96_a16,
     author = {Slavi\v{s}a B. Pre\v{s}i\'c},
     title = {Fin-set: a {Syntactical} {Definition} of {Finite} {Sets}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {155 },
     publisher = {mathdoc},
     volume = {_N_S_82},
     number = {96},
     year = {2007},
     zbl = {1164.03012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2007_N_S_82_96_a16/}
}
TY  - JOUR
AU  - Slaviša B. Prešić
TI  - Fin-set: a Syntactical Definition of Finite Sets
JO  - Publications de l'Institut Mathématique
PY  - 2007
SP  - 155 
VL  - _N_S_82
IS  - 96
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2007_N_S_82_96_a16/
LA  - en
ID  - PIM_2007_N_S_82_96_a16
ER  - 
%0 Journal Article
%A Slaviša B. Prešić
%T Fin-set: a Syntactical Definition of Finite Sets
%J Publications de l'Institut Mathématique
%D 2007
%P 155 
%V _N_S_82
%N 96
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2007_N_S_82_96_a16/
%G en
%F PIM_2007_N_S_82_96_a16
Slaviša B. Prešić. Fin-set: a Syntactical Definition of Finite Sets. Publications de l'Institut Mathématique, _N_S_82 (2007) no. 96, p. 155 . http://geodesic.mathdoc.fr/item/PIM_2007_N_S_82_96_a16/