Completeness Theorem for a First Order Linear-time Logic
Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 1 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We describe a first order temporal logic over the natural numbers time. It is well known that the corresponding set of all valid formulas is not recursively enumerable, and that there is no finitistic axiomatization. We present an infinitary axiomatization which is sound and complete with respect to the considered logic.
Classification : 03B44
@article{PIM_2001_N_S_69_83_a0,
     author = {Zoran Ognjanovi\'c},
     title = {Completeness {Theorem} for a {First} {Order} {Linear-time} {Logic}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {1 },
     publisher = {mathdoc},
     volume = {_N_S_69},
     number = {83},
     year = {2001},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a0/}
}
TY  - JOUR
AU  - Zoran Ognjanović
TI  - Completeness Theorem for a First Order Linear-time Logic
JO  - Publications de l'Institut Mathématique
PY  - 2001
SP  - 1 
VL  - _N_S_69
IS  - 83
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a0/
LA  - en
ID  - PIM_2001_N_S_69_83_a0
ER  - 
%0 Journal Article
%A Zoran Ognjanović
%T Completeness Theorem for a First Order Linear-time Logic
%J Publications de l'Institut Mathématique
%D 2001
%P 1 
%V _N_S_69
%N 83
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a0/
%G en
%F PIM_2001_N_S_69_83_a0
Zoran Ognjanović. Completeness Theorem for a First Order Linear-time Logic. Publications de l'Institut Mathématique, _N_S_69 (2001) no. 83, p. 1 . http://geodesic.mathdoc.fr/item/PIM_2001_N_S_69_83_a0/