A new uniform Ar(1) time series model (nuar(1))
Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 145
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present a new first-order autoregressive
time series model (so-called NUAR(1) model) for continuous uniform
$(0,1)$ variables, given by
$
X_n=\begin{cases}
\alpha X_{n-1}, \text{ w.p. } \alpha,\\
\beta X_{n-1}+\varepsilon_n, \text{ w.p. } 1-\alpha,
\end{cases}
$
where $0\alpha,\beta1$, $(1-\alpha)/\beta\in\{1,2,\dots\}$ and
$\{\varepsilon_n\}$ is the innovation sequence of independent and
identically distributed random variables, such that each $X_n$ has
continuous uniform $(0,1)$ distribution. The distribution of the
innovation sequence and autoregressive structure of NUAR(1) model are
discussed. It is shown that this model is partially time-reversible if
the parameters are equal. We give also the estimates of the parameters
of the model.
Classification :
62M10
Keywords: Autoregressive process, continous uniform (0,1) distribution, time series, estimation, random coefficients, residuals
Keywords: Autoregressive process, continous uniform (0,1) distribution, time series, estimation, random coefficients, residuals
@article{PIM_2000_N_S_68_82_a15,
author = {Miroslav M. Risti\'c and Biljana \v{C}. Popovi\'c},
title = {A new uniform {Ar(1)} time series model (nuar(1))},
journal = {Publications de l'Institut Math\'ematique},
pages = {145 },
publisher = {mathdoc},
volume = {_N_S_68},
number = {82},
year = {2000},
zbl = {1087.62102},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a15/}
}
TY - JOUR AU - Miroslav M. Ristić AU - Biljana Č. Popović TI - A new uniform Ar(1) time series model (nuar(1)) JO - Publications de l'Institut Mathématique PY - 2000 SP - 145 VL - _N_S_68 IS - 82 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a15/ LA - en ID - PIM_2000_N_S_68_82_a15 ER -
Miroslav M. Ristić; Biljana Č. Popović. A new uniform Ar(1) time series model (nuar(1)). Publications de l'Institut Mathématique, _N_S_68 (2000) no. 82, p. 145 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_68_82_a15/