On Classical Solutions to Mixed Boundary Problems for One-dimensional Parabolic Equations of Second Order
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 53
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We prove the existence and uniqueness of classical
solutions to mixed boundary problems for the equation
$
\frac{\partial u}{\partial t}(x,t) - \frac{\partial^2u}{\partial x^2}(x,t)
+ q(x)u(x,t) = f(x,t)
$
on a closed rectangle, with arbitrary self-adjoint boundary conditions. The
initial function, the potential $q(x)$ and $f(x,t)$ belong to some
subclasses of $W^{(k)}_p(\cdot)$
($1
@article{PIM_2000_N_S_67_81_a5,
author = {Neboj\v{s}a L. La\v{z}eti\'c},
title = {On {Classical} {Solutions} to {Mixed} {Boundary} {Problems} for {One-dimensional} {Parabolic} {Equations} of {Second} {Order}},
journal = {Publications de l'Institut Math\'ematique},
pages = {53 },
year = {2000},
volume = {_N_S_67},
number = {81},
zbl = {0949.35063},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a5/}
}
TY - JOUR AU - Nebojša L. Lažetić TI - On Classical Solutions to Mixed Boundary Problems for One-dimensional Parabolic Equations of Second Order JO - Publications de l'Institut Mathématique PY - 2000 SP - 53 VL - _N_S_67 IS - 81 UR - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a5/ LA - en ID - PIM_2000_N_S_67_81_a5 ER -
%0 Journal Article %A Nebojša L. Lažetić %T On Classical Solutions to Mixed Boundary Problems for One-dimensional Parabolic Equations of Second Order %J Publications de l'Institut Mathématique %D 2000 %P 53 %V _N_S_67 %N 81 %U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a5/ %G en %F PIM_2000_N_S_67_81_a5
Nebojša L. Lažetić. On Classical Solutions to Mixed Boundary Problems for One-dimensional Parabolic Equations of Second Order. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 53 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a5/