On Classical Solutions to Mixed Boundary Problems for One-dimensional Parabolic Equations of Second Order
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 53 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We prove the existence and uniqueness of classical solutions to mixed boundary problems for the equation $ \frac{\partial u}{\partial t}(x,t) - \frac{\partial^2u}{\partial x^2}(x,t) + q(x)u(x,t) = f(x,t) $ on a closed rectangle, with arbitrary self-adjoint boundary conditions. The initial function, the potential $q(x)$ and $f(x,t)$ belong to some subclasses of $W^{(k)}_p(\cdot)$ ($1
Classification : 35D15
@article{PIM_2000_N_S_67_81_a5,
     author = {Neboj\v{s}a L. La\v{z}eti\'c},
     title = {On {Classical} {Solutions} to {Mixed} {Boundary} {Problems} for {One-dimensional} {Parabolic} {Equations} of {Second} {Order}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {53 },
     publisher = {mathdoc},
     volume = {_N_S_67},
     number = {81},
     year = {2000},
     zbl = {0949.35063},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a5/}
}
TY  - JOUR
AU  - Nebojša L. Lažetić
TI  - On Classical Solutions to Mixed Boundary Problems for One-dimensional Parabolic Equations of Second Order
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 53 
VL  - _N_S_67
IS  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a5/
LA  - en
ID  - PIM_2000_N_S_67_81_a5
ER  - 
%0 Journal Article
%A Nebojša L. Lažetić
%T On Classical Solutions to Mixed Boundary Problems for One-dimensional Parabolic Equations of Second Order
%J Publications de l'Institut Mathématique
%D 2000
%P 53 
%V _N_S_67
%N 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a5/
%G en
%F PIM_2000_N_S_67_81_a5
Nebojša L. Lažetić. On Classical Solutions to Mixed Boundary Problems for One-dimensional Parabolic Equations of Second Order. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 53 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a5/