Regularly Varying Sequences and Entire Functions of Finite Order
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 31 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We present a method for estimating the asymptotic behavior of: $ f^\alpha(x):=\sum_{n=1}^\infty n^\alpha l_n a_n x^n, x\to \infty, \alpha \in R, $ related to a given entire function $f(x):=\sum_{n=1}^\infty a_n x^n$ of finite order $\rho$, $0\rho+\infty$, $a_n\ge 0$, $n\in N$; where $(l_n)$, $n\in N$, are slowly varying sequences in Karamata's sense.
Classification : 30D20 26A12
@article{PIM_2000_N_S_67_81_a3,
     author = {Slavko Simi\'c},
     title = {Regularly {Varying} {Sequences} and {Entire} {Functions} of {Finite} {Order}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {31 },
     publisher = {mathdoc},
     volume = {_N_S_67},
     number = {81},
     year = {2000},
     zbl = {1011.30025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a3/}
}
TY  - JOUR
AU  - Slavko Simić
TI  - Regularly Varying Sequences and Entire Functions of Finite Order
JO  - Publications de l'Institut Mathématique
PY  - 2000
SP  - 31 
VL  - _N_S_67
IS  - 81
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a3/
LA  - en
ID  - PIM_2000_N_S_67_81_a3
ER  - 
%0 Journal Article
%A Slavko Simić
%T Regularly Varying Sequences and Entire Functions of Finite Order
%J Publications de l'Institut Mathématique
%D 2000
%P 31 
%V _N_S_67
%N 81
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a3/
%G en
%F PIM_2000_N_S_67_81_a3
Slavko Simić. Regularly Varying Sequences and Entire Functions of Finite Order. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 31 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a3/