Regularly Varying Sequences and Entire Functions of Finite Order
Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 31
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We present a method for estimating the asymptotic behavior of:
$
f^\alpha(x):=\sum_{n=1}^\infty n^\alpha l_n a_n x^n,
x\to \infty, \alpha \in R,
$
related to a given entire function $f(x):=\sum_{n=1}^\infty a_n x^n$ of
finite order $\rho$, $0\rho+\infty$, $a_n\ge 0$, $n\in N$; where
$(l_n)$, $n\in N$, are slowly varying sequences in Karamata's sense.
@article{PIM_2000_N_S_67_81_a3,
author = {Slavko Simi\'c},
title = {Regularly {Varying} {Sequences} and {Entire} {Functions} of {Finite} {Order}},
journal = {Publications de l'Institut Math\'ematique},
pages = {31 },
publisher = {mathdoc},
volume = {_N_S_67},
number = {81},
year = {2000},
zbl = {1011.30025},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a3/}
}
Slavko Simić. Regularly Varying Sequences and Entire Functions of Finite Order. Publications de l'Institut Mathématique, _N_S_67 (2000) no. 81, p. 31 . http://geodesic.mathdoc.fr/item/PIM_2000_N_S_67_81_a3/