Topological Order Complexes and Resolutions of Discriminant Sets
Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 165 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

If elements of a partially ordered set run over a topological space, then the corresponding order complex admits a natural topology, providing that similar interior points of simplices with close vertices are close to one another. Such topological order complexes appear naturally in the conical resolutions of many singular algebraic varieties, especially of discriminant varieties, i.e. the spaces of singular geometric objects. These resolutions generalize the simplicial resolutions to the case of non-normal varieties. Using these order complexes we study the cohomology rings of many spaces of nonsingular geometrical objects, including the spaces of nondegenerate linear operators in $R^n$, $C^n$ or $H^n$, of homogeneous functions $R^2 \to R^1$ without roots of high multiplicity in $RP^1$, of nonsingular hypersurfaces of a fixed degree in $CP^n$, and of Hermitian matrices with simple spectra.
Classification : 14J17 55U99
@article{PIM_1999_N_S_66_80_a9,
     author = {V. A. Vassiliev},
     title = {Topological {Order} {Complexes} and {Resolutions} of {Discriminant} {Sets}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {165 },
     publisher = {mathdoc},
     volume = {_N_S_66},
     number = {80},
     year = {1999},
     zbl = {0953.55011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a9/}
}
TY  - JOUR
AU  - V. A. Vassiliev
TI  - Topological Order Complexes and Resolutions of Discriminant Sets
JO  - Publications de l'Institut Mathématique
PY  - 1999
SP  - 165 
VL  - _N_S_66
IS  - 80
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a9/
LA  - en
ID  - PIM_1999_N_S_66_80_a9
ER  - 
%0 Journal Article
%A V. A. Vassiliev
%T Topological Order Complexes and Resolutions of Discriminant Sets
%J Publications de l'Institut Mathématique
%D 1999
%P 165 
%V _N_S_66
%N 80
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a9/
%G en
%F PIM_1999_N_S_66_80_a9
V. A. Vassiliev. Topological Order Complexes and Resolutions of Discriminant Sets. Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 165 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a9/