Homotopy Classification of Nondegenerate Quasiperiodic Curves on the 2-sphere
Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 127
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We classify the curves on $S^2$ with fixed monodromy operator and
nowhere vanishing geodesic curvature. The number of connected
components of the space of such curves turns out to be 2 or 3 depending
on the corresponding monodromy. This allows us to classify completely
symplectic leaves of the Zamolodchikov algebra, the next case after the
Virasoro algebra in the natural hierarchy of the Poisson structures on
the spaces of linear differential equations.
Classification :
53C15 34A20 55R65
@article{PIM_1999_N_S_66_80_a7,
author = {B. Z. Shapiro and B. A. Khesin},
title = {Homotopy {Classification} of {Nondegenerate} {Quasiperiodic} {Curves} on the 2-sphere},
journal = {Publications de l'Institut Math\'ematique},
pages = {127 },
publisher = {mathdoc},
volume = {_N_S_66},
number = {80},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a7/}
}
TY - JOUR AU - B. Z. Shapiro AU - B. A. Khesin TI - Homotopy Classification of Nondegenerate Quasiperiodic Curves on the 2-sphere JO - Publications de l'Institut Mathématique PY - 1999 SP - 127 VL - _N_S_66 IS - 80 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a7/ LA - en ID - PIM_1999_N_S_66_80_a7 ER -
%0 Journal Article %A B. Z. Shapiro %A B. A. Khesin %T Homotopy Classification of Nondegenerate Quasiperiodic Curves on the 2-sphere %J Publications de l'Institut Mathématique %D 1999 %P 127 %V _N_S_66 %N 80 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a7/ %G en %F PIM_1999_N_S_66_80_a7
B. Z. Shapiro; B. A. Khesin. Homotopy Classification of Nondegenerate Quasiperiodic Curves on the 2-sphere. Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 127 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a7/