Homotopy Classification of Nondegenerate Quasiperiodic Curves on the 2-sphere
Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 127 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We classify the curves on $S^2$ with fixed monodromy operator and nowhere vanishing geodesic curvature. The number of connected components of the space of such curves turns out to be 2 or 3 depending on the corresponding monodromy. This allows us to classify completely symplectic leaves of the Zamolodchikov algebra, the next case after the Virasoro algebra in the natural hierarchy of the Poisson structures on the spaces of linear differential equations.
Classification : 53C15 34A20 55R65
@article{PIM_1999_N_S_66_80_a7,
     author = {B. Z. Shapiro and B. A. Khesin},
     title = {Homotopy {Classification} of {Nondegenerate} {Quasiperiodic} {Curves} on the 2-sphere},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {127 },
     publisher = {mathdoc},
     volume = {_N_S_66},
     number = {80},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a7/}
}
TY  - JOUR
AU  - B. Z. Shapiro
AU  - B. A. Khesin
TI  - Homotopy Classification of Nondegenerate Quasiperiodic Curves on the 2-sphere
JO  - Publications de l'Institut Mathématique
PY  - 1999
SP  - 127 
VL  - _N_S_66
IS  - 80
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a7/
LA  - en
ID  - PIM_1999_N_S_66_80_a7
ER  - 
%0 Journal Article
%A B. Z. Shapiro
%A B. A. Khesin
%T Homotopy Classification of Nondegenerate Quasiperiodic Curves on the 2-sphere
%J Publications de l'Institut Mathématique
%D 1999
%P 127 
%V _N_S_66
%N 80
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a7/
%G en
%F PIM_1999_N_S_66_80_a7
B. Z. Shapiro; B. A. Khesin. Homotopy Classification of Nondegenerate Quasiperiodic Curves on the 2-sphere. Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 127 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a7/