The Generalized Baues Problem for Cyclic Polytopes II
Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 3
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Given an affine surjection of polytopes $\pi: P \to Q$, the
Generalized Baues Problem asks whether the poset of all proper
polyhedral subdivisions of $Q$ which are induced by the map $\pi$
has the homotopy type of a sphere. We extend earlier work of the last
two authors on subdivisions of cyclic polytopes to give an affirmative
answer to the problem for the natural surjections between cyclic
polytopes $\pi:C(n,d')\to C(n,d)$ for all $1\leq d
@article{PIM_1999_N_S_66_80_a1,
author = {Christios A. Athanasiadis and J\"org Rambau and Francisco Santos},
title = {The {Generalized} {Baues} {Problem} for {Cyclic} {Polytopes} {II}},
journal = {Publications de l'Institut Math\'ematique},
pages = {3 },
publisher = {mathdoc},
volume = {_N_S_66},
number = {80},
year = {1999},
zbl = {1009.52023},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a1/}
}
TY - JOUR AU - Christios A. Athanasiadis AU - Jörg Rambau AU - Francisco Santos TI - The Generalized Baues Problem for Cyclic Polytopes II JO - Publications de l'Institut Mathématique PY - 1999 SP - 3 VL - _N_S_66 IS - 80 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a1/ LA - en ID - PIM_1999_N_S_66_80_a1 ER -
%0 Journal Article %A Christios A. Athanasiadis %A Jörg Rambau %A Francisco Santos %T The Generalized Baues Problem for Cyclic Polytopes II %J Publications de l'Institut Mathématique %D 1999 %P 3 %V _N_S_66 %N 80 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a1/ %G en %F PIM_1999_N_S_66_80_a1
Christios A. Athanasiadis; Jörg Rambau; Francisco Santos. The Generalized Baues Problem for Cyclic Polytopes II. Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 3 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a1/