The Generalized Baues Problem for Cyclic Polytopes II
Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 3 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Given an affine surjection of polytopes $\pi: P \to Q$, the Generalized Baues Problem asks whether the poset of all proper polyhedral subdivisions of $Q$ which are induced by the map $\pi$ has the homotopy type of a sphere. We extend earlier work of the last two authors on subdivisions of cyclic polytopes to give an affirmative answer to the problem for the natural surjections between cyclic polytopes $\pi:C(n,d')\to C(n,d)$ for all $1\leq d
Classification : 52B11 05E25
@article{PIM_1999_N_S_66_80_a1,
     author = {Christios A. Athanasiadis and J\"org Rambau and Francisco Santos},
     title = {The {Generalized} {Baues} {Problem} for {Cyclic} {Polytopes} {II}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {3 },
     publisher = {mathdoc},
     volume = {_N_S_66},
     number = {80},
     year = {1999},
     zbl = {1009.52023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a1/}
}
TY  - JOUR
AU  - Christios A. Athanasiadis
AU  - Jörg Rambau
AU  - Francisco Santos
TI  - The Generalized Baues Problem for Cyclic Polytopes II
JO  - Publications de l'Institut Mathématique
PY  - 1999
SP  - 3 
VL  - _N_S_66
IS  - 80
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a1/
LA  - en
ID  - PIM_1999_N_S_66_80_a1
ER  - 
%0 Journal Article
%A Christios A. Athanasiadis
%A Jörg Rambau
%A Francisco Santos
%T The Generalized Baues Problem for Cyclic Polytopes II
%J Publications de l'Institut Mathématique
%D 1999
%P 3 
%V _N_S_66
%N 80
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a1/
%G en
%F PIM_1999_N_S_66_80_a1
Christios A. Athanasiadis; Jörg Rambau; Francisco Santos. The Generalized Baues Problem for Cyclic Polytopes II. Publications de l'Institut Mathématique, _N_S_66 (1999) no. 80, p. 3 . http://geodesic.mathdoc.fr/item/PIM_1999_N_S_66_80_a1/