Distance of Thorny Graphs
Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 31 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G$ be a connected graph on $n$ vertices. The thorn graph $G^\star$ of $G$ is obtained from $G$ by attaching to its $i$-th vertex $p_i$ new vertices of degree one, $p_i \geq 0$, $i=1,2,\ldots,n$. Let $d(G)$ be the sum of distances of all pairs of vertices of $G$. We establish relations between $d(G)$ and $d(G^\star)$ and examine several special cases of this result. In particular, if $p_i=\gamma-\gamma_i$, where $\gamma$ is a constant and $\gamma_i$ the degree of the $i$-th vertex in $G$, and if $G$ is a tree, then there is a linear relation between $d(G^\star)$ and $d(G)$, namely $d(G^\star)=(\gamma-1)^2\,d(G)+[(\gamma-1)n+1]^2$.
Classification : 05C12
@article{PIM_1998_N_S_63_77_a4,
     author = {Ivan Gutman},
     title = {Distance of {Thorny} {Graphs}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {31 },
     publisher = {mathdoc},
     volume = {_N_S_63},
     number = {77},
     year = {1998},
     zbl = {0942.05021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a4/}
}
TY  - JOUR
AU  - Ivan Gutman
TI  - Distance of Thorny Graphs
JO  - Publications de l'Institut Mathématique
PY  - 1998
SP  - 31 
VL  - _N_S_63
IS  - 77
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a4/
LA  - en
ID  - PIM_1998_N_S_63_77_a4
ER  - 
%0 Journal Article
%A Ivan Gutman
%T Distance of Thorny Graphs
%J Publications de l'Institut Mathématique
%D 1998
%P 31 
%V _N_S_63
%N 77
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a4/
%G en
%F PIM_1998_N_S_63_77_a4
Ivan Gutman. Distance of Thorny Graphs. Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 31 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a4/