Atkin's Theorem on Pseudo-squares
Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 21 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We give an elementary proof of a theorem of A.O.L. Atkin on psuedo-squares. As pointed out by Atkin, from this theorem it immediately follows that there exists an infinite sequence of positive integers, whose $j$~th term $s(j)$ satisfies $s(j)=j^2 + O(\log(j))$, such that the set of integers representable as a sum of two distinct terms of this sequence is of positive asymptotic density.
Classification : 11B13
@article{PIM_1998_N_S_63_77_a2,
     author = {R. Balasubramanian and D.S. Ramana},
     title = {Atkin's {Theorem} on {Pseudo-squares}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {21 },
     publisher = {mathdoc},
     volume = {_N_S_63},
     number = {77},
     year = {1998},
     zbl = {0945.11007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a2/}
}
TY  - JOUR
AU  - R. Balasubramanian
AU  - D.S. Ramana
TI  - Atkin's Theorem on Pseudo-squares
JO  - Publications de l'Institut Mathématique
PY  - 1998
SP  - 21 
VL  - _N_S_63
IS  - 77
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a2/
LA  - en
ID  - PIM_1998_N_S_63_77_a2
ER  - 
%0 Journal Article
%A R. Balasubramanian
%A D.S. Ramana
%T Atkin's Theorem on Pseudo-squares
%J Publications de l'Institut Mathématique
%D 1998
%P 21 
%V _N_S_63
%N 77
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a2/
%G en
%F PIM_1998_N_S_63_77_a2
R. Balasubramanian; D.S. Ramana. Atkin's Theorem on Pseudo-squares. Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 21 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a2/