Atkin's Theorem on Pseudo-squares
Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 21

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We give an elementary proof of a theorem of A.O.L. Atkin on psuedo-squares. As pointed out by Atkin, from this theorem it immediately follows that there exists an infinite sequence of positive integers, whose $j$~th term $s(j)$ satisfies $s(j)=j^2 + O(\log(j))$, such that the set of integers representable as a sum of two distinct terms of this sequence is of positive asymptotic density.
Classification : 11B13
@article{PIM_1998_N_S_63_77_a2,
     author = {R. Balasubramanian and D.S. Ramana},
     title = {Atkin's {Theorem} on {Pseudo-squares}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {21 },
     publisher = {mathdoc},
     volume = {_N_S_63},
     number = {77},
     year = {1998},
     zbl = {0945.11007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a2/}
}
TY  - JOUR
AU  - R. Balasubramanian
AU  - D.S. Ramana
TI  - Atkin's Theorem on Pseudo-squares
JO  - Publications de l'Institut Mathématique
PY  - 1998
SP  - 21 
VL  - _N_S_63
IS  - 77
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a2/
LA  - en
ID  - PIM_1998_N_S_63_77_a2
ER  - 
%0 Journal Article
%A R. Balasubramanian
%A D.S. Ramana
%T Atkin's Theorem on Pseudo-squares
%J Publications de l'Institut Mathématique
%D 1998
%P 21 
%V _N_S_63
%N 77
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a2/
%G en
%F PIM_1998_N_S_63_77_a2
R. Balasubramanian; D.S. Ramana. Atkin's Theorem on Pseudo-squares. Publications de l'Institut Mathématique, _N_S_63 (1998) no. 77, p. 21 . http://geodesic.mathdoc.fr/item/PIM_1998_N_S_63_77_a2/