Generalized Connections on T(t2m)
Publications de l'Institut Mathématique, _N_S_60 (1996) no. 74, p. 88
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The geometry of some manifolds fibered over a given manifold
$M$ is in the first place characterized by the group of allowable
coordinate transformations. For the tangent manifold $TM$ these are
given by $x^{i'}=x^{i'}(x)y^{i'} =
\frac{\partial x^{i'}}{\partial x^{i}} y^{i}$, rank $\left[ \frac{\partial
x^{i'}}{\partial x^{i}} \right] = n$, and for the total space of a vector
bundle $E\rightarrow M$, we have $x^{i'} = x^{i'}(x)$, $y^{a'} =
M^{a'}_{a}(x)y^{a}$, rank$(M^{a'}_{a}) = m =$ dimension of type fiber.
\par
In the last years R. Miron, Gh. Atanasiu and others examined the
Osc$^{k}M$ spaces, [10], [11], [12]. Here the case
$k=2$ will be investigated. Instead of Osc$^{2}M$ the notation
$T^{2}M$ will be used (Osc$^{1}M$ coincides with $TM$). Instead of
$d$-connection used in [10], [11], [12}], we consider
here the generalized connection and determine its torsion tensor. As a
special case the known $d$-connection is obtained.
@article{PIM_1996_N_S_60_74_a9,
author = {Irena \v{C}omi\'c},
title = {Generalized {Connections} on {T(t2m)}},
journal = {Publications de l'Institut Math\'ematique},
pages = {88 },
year = {1996},
volume = {_N_S_60},
number = {74},
zbl = {0885.53022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_60_74_a9/}
}
Irena Čomić. Generalized Connections on T(t2m). Publications de l'Institut Mathématique, _N_S_60 (1996) no. 74, p. 88 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_60_74_a9/