Generalized Connections on T(t2m)
Publications de l'Institut Mathématique, _N_S_60 (1996) no. 74, p. 88
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The geometry of some manifolds fibered over a given manifold
$M$ is in the first place characterized by the group of allowable
coordinate transformations. For the tangent manifold $TM$ these are
given by $x^{i'}=x^{i'}(x)y^{i'} =
\frac{\partial x^{i'}}{\partial x^{i}} y^{i}$, rank $\left[ \frac{\partial
x^{i'}}{\partial x^{i}} \right] = n$, and for the total space of a vector
bundle $E\rightarrow M$, we have $x^{i'} = x^{i'}(x)$, $y^{a'} =
M^{a'}_{a}(x)y^{a}$, rank$(M^{a'}_{a}) = m =$ dimension of type fiber.
\par
In the last years R. Miron, Gh. Atanasiu and others examined the
Osc$^{k}M$ spaces, [10], [11], [12]. Here the case
$k=2$ will be investigated. Instead of Osc$^{2}M$ the notation
$T^{2}M$ will be used (Osc$^{1}M$ coincides with $TM$). Instead of
$d$-connection used in [10], [11], [12}], we consider
here the generalized connection and determine its torsion tensor. As a
special case the known $d$-connection is obtained.
@article{PIM_1996_N_S_60_74_a9,
author = {Irena \v{C}omi\'c},
title = {Generalized {Connections} on {T(t2m)}},
journal = {Publications de l'Institut Math\'ematique},
pages = {88 },
publisher = {mathdoc},
volume = {_N_S_60},
number = {74},
year = {1996},
zbl = {0885.53022},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_60_74_a9/}
}
Irena Čomić. Generalized Connections on T(t2m). Publications de l'Institut Mathématique, _N_S_60 (1996) no. 74, p. 88 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_60_74_a9/