Involutions Associated With Sums of two Squares
Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 18

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In 1984 D.R. Heath-Brown constructed two involutions from which a new and simple proof of Fermat's theorem on the decomposition of a prime $p\equiv 1\pmod 4$ as a sum of two squares was derived. An algorithm based on the composition of the two involutions is constructed for the decomposition of $p$, and the method can also be used for the factorisations of suitable composite numbers. The process corresponds to the continued fraction expansion of a reduced quadratic irrational related to $\sqrt p$, and the period of the composite map is the sum of the relevant partial quotients.
Classification : 11A51 11Y05
Keywords: Fermat's two square theorem, involutions, periods factorisation, continued fractions
@article{PIM_1996_N_S_59_73_a2,
     author = {P. Shiu},
     title = {Involutions {Associated} {With} {Sums} of two {Squares}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {18 },
     publisher = {mathdoc},
     volume = {_N_S_59},
     number = {73},
     year = {1996},
     zbl = {0884.11008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a2/}
}
TY  - JOUR
AU  - P. Shiu
TI  - Involutions Associated With Sums of two Squares
JO  - Publications de l'Institut Mathématique
PY  - 1996
SP  - 18 
VL  - _N_S_59
IS  - 73
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a2/
LA  - en
ID  - PIM_1996_N_S_59_73_a2
ER  - 
%0 Journal Article
%A P. Shiu
%T Involutions Associated With Sums of two Squares
%J Publications de l'Institut Mathématique
%D 1996
%P 18 
%V _N_S_59
%N 73
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a2/
%G en
%F PIM_1996_N_S_59_73_a2
P. Shiu. Involutions Associated With Sums of two Squares. Publications de l'Institut Mathématique, _N_S_59 (1996) no. 73, p. 18 . http://geodesic.mathdoc.fr/item/PIM_1996_N_S_59_73_a2/