On the asymptotic behaviour of two sequences related by a convolution equation
Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 143 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We analyse analyse the relation between the asymptotic behaviour of two sequences $\{a(n)\}$ and $\{b(n)\}$ related by the system of equations $nb(n) = a\ast b(n)$, where $\ast$ denotes convolution. This type of relation appears in studying discrete infinitely divisible laws and more recently in risk theory. In Hawkes and Jenkins (1978) the authors considered this relation and obtained the asymptotic behaviour of $b(n)$ in the cases where $a(n)\to\alpha$, or $\frac 1n\sum_{k=0}^na(k)\to \alpha$, where $\alpha>0$. We consider the case $\alpha = 0$ and consider O-analogues.
Classification : 40A99 40E99
Keywords: convolution equation
@article{PIM_1995_N_S_58_72_a15,
     author = {Edward Omey},
     title = {On the asymptotic behaviour of two sequences related by a convolution equation},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {143 },
     publisher = {mathdoc},
     volume = {_N_S_58},
     number = {72},
     year = {1995},
     zbl = {0884.40006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a15/}
}
TY  - JOUR
AU  - Edward Omey
TI  - On the asymptotic behaviour of two sequences related by a convolution equation
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 143 
VL  - _N_S_58
IS  - 72
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a15/
LA  - en
ID  - PIM_1995_N_S_58_72_a15
ER  - 
%0 Journal Article
%A Edward Omey
%T On the asymptotic behaviour of two sequences related by a convolution equation
%J Publications de l'Institut Mathématique
%D 1995
%P 143 
%V _N_S_58
%N 72
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a15/
%G en
%F PIM_1995_N_S_58_72_a15
Edward Omey. On the asymptotic behaviour of two sequences related by a convolution equation. Publications de l'Institut Mathématique, _N_S_58 (1995) no. 72, p. 143 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_58_72_a15/