A few Remarks on Reduced Ideal-products
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 155 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A nicer shape of the condition $(\Lambda\Psi)$ (which ensures preservation of separation axioms $T_k$, $k=0,1,2,3,3\frac12$, in reduced ideal-products) is given. If an reduced-ideal products is $T_0$, $T_1$ or $T_2$ then ``almost all" coordinate spaces have this property. This implication holds for $T_3$-property if the condition $(\Lambda\Psi)$ is satisfied. Some results on mappings and homogenicity of r.i. products are obtained. Finally, it is proved that r.i.p. of topological groups (rings) is a topological group (ring).
Classification : 54B10 54B15 03C65 54H11
@article{PIM_1995_N_S_57_71_a16,
     author = {Milan Grulovi\'c and Milo\v{s} Kurili\'c},
     title = {A few {Remarks} on {Reduced} {Ideal-products}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {155 },
     publisher = {mathdoc},
     volume = {_N_S_57},
     number = {71},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a16/}
}
TY  - JOUR
AU  - Milan Grulović
AU  - Miloš Kurilić
TI  - A few Remarks on Reduced Ideal-products
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 155 
VL  - _N_S_57
IS  - 71
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a16/
LA  - en
ID  - PIM_1995_N_S_57_71_a16
ER  - 
%0 Journal Article
%A Milan Grulović
%A Miloš Kurilić
%T A few Remarks on Reduced Ideal-products
%J Publications de l'Institut Mathématique
%D 1995
%P 155 
%V _N_S_57
%N 71
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a16/
%G en
%F PIM_1995_N_S_57_71_a16
Milan Grulović; Miloš Kurilić. A few Remarks on Reduced Ideal-products. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 155 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a16/