Free Objects in Primitive Varieties of N-groupoids
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 147 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A variety of $n$-groupoids (i.e. algebras with one $n$-ary operation $f$) is said to be a primitive $n$-variety if it is defined by a system of identities of the following form: $ f(x_{i_1},x_{i_2},łdots,x_{i_n}) = f(x_{j_1},x_{j_2},łdots,x_{j_n}) $ Here we give a convenient description of free objects in primitive $n$-varieties, and several properties of free objects are also established.
Classification : 11M06
@article{PIM_1995_N_S_57_71_a15,
     author = {Georgi \v{C}upona and Smile Markovski},
     title = {Free {Objects} in {Primitive} {Varieties} of {N-groupoids}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {147 },
     publisher = {mathdoc},
     volume = {_N_S_57},
     number = {71},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a15/}
}
TY  - JOUR
AU  - Georgi Čupona
AU  - Smile Markovski
TI  - Free Objects in Primitive Varieties of N-groupoids
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 147 
VL  - _N_S_57
IS  - 71
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a15/
LA  - en
ID  - PIM_1995_N_S_57_71_a15
ER  - 
%0 Journal Article
%A Georgi Čupona
%A Smile Markovski
%T Free Objects in Primitive Varieties of N-groupoids
%J Publications de l'Institut Mathématique
%D 1995
%P 147 
%V _N_S_57
%N 71
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a15/
%G en
%F PIM_1995_N_S_57_71_a15
Georgi Čupona; Smile Markovski. Free Objects in Primitive Varieties of N-groupoids. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 147 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a15/