Free Objects in Primitive Varieties of N-groupoids
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 147
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A variety of $n$-groupoids (i.e. algebras with one $n$-ary
operation $f$) is said to be a primitive $n$-variety if it is defined
by a system of identities of the following form:
$
f(x_{i_1},x_{i_2},łdots,x_{i_n}) = f(x_{j_1},x_{j_2},łdots,x_{j_n})
$
Here we give a convenient description of free objects in primitive
$n$-varieties, and several properties of free objects are also
established.
Classification :
11M06
@article{PIM_1995_N_S_57_71_a15,
author = {Georgi \v{C}upona and Smile Markovski},
title = {Free {Objects} in {Primitive} {Varieties} of {N-groupoids}},
journal = {Publications de l'Institut Math\'ematique},
pages = {147 },
year = {1995},
volume = {_N_S_57},
number = {71},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a15/}
}
Georgi Čupona; Smile Markovski. Free Objects in Primitive Varieties of N-groupoids. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 147 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a15/