Some Remarks on Generalized Martin's Axiom
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 135 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $GMA$ denote that if ${\Bbb P}$ is well-met, strongly $\omega_1$-closed and $\omega_1$-centered partial order and ${\Cal D}$ a family of $2^{\omega_1}$ dense subsets of ${\Bbb P}$: then there is a filter $G\subseteq {\Bbb P}$ which meets every member of ${\Cal D}$. The consistency of $2^\omega = \omega_1 + 2^{\omega_1}>\omega_2 + GMA$ was proved by Baumgartner [1] and in [13] many of its consequences were considered. In this paper we give a consequence and present an independence result. Namely, we prove that, as a consequence of $2^\omega = \omega_1 + 2^{\omega_1}>\omega_2 + GMA$, every $\leq^*$-increasing $\omega_2$-sequence in $(\omega_1^{\omega_1},\leq^*)$ is a lower half of some $(\omega_2,\omega_2)$-gap and show that the existence of an $\omega_2$-Kurepa tree is consistent with and independent of $2^\omega = \omega_1 + 2^{\omega_1}>\omega_2 + GMA$.
Classification : 03E35
@article{PIM_1995_N_S_57_71_a13,
     author = {Z. Spasojevi\'c},
     title = {Some {Remarks} on {Generalized} {Martin's} {Axiom}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {135 },
     publisher = {mathdoc},
     volume = {_N_S_57},
     number = {71},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a13/}
}
TY  - JOUR
AU  - Z. Spasojević
TI  - Some Remarks on Generalized Martin's Axiom
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 135 
VL  - _N_S_57
IS  - 71
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a13/
LA  - en
ID  - PIM_1995_N_S_57_71_a13
ER  - 
%0 Journal Article
%A Z. Spasojević
%T Some Remarks on Generalized Martin's Axiom
%J Publications de l'Institut Mathématique
%D 1995
%P 135 
%V _N_S_57
%N 71
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a13/
%G en
%F PIM_1995_N_S_57_71_a13
Z. Spasojević. Some Remarks on Generalized Martin's Axiom. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 135 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a13/