On the Fourth Moment of the Riemann Zeta Functions
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 101
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Atkinson proved in 1941 that $\int^\infty_0 e^{-t/T}
|\zeta(1/2+it)|^4dt = TQ_4(\log T)+O(T^c)$ with $c = 8/9+\varepsilon$,
where $Q_4(y)$ is a suitable polynomial in $y$ of degree four. We
improve Atkinson's result by showing that $c=1/2$ is possible, and we
provide explicit expressions for all the coefficients of $Q_4(y)$ and
the closely related polynomial $P_4(y)$.
Classification :
11M06
@article{PIM_1995_N_S_57_71_a10,
author = {Aleksandar Ivi\'c},
title = {On the {Fourth} {Moment} of the {Riemann} {Zeta} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {101 },
year = {1995},
volume = {_N_S_57},
number = {71},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/}
}
Aleksandar Ivić. On the Fourth Moment of the Riemann Zeta Functions. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 101 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/