On the Fourth Moment of the Riemann Zeta Functions
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 101
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Atkinson proved in 1941 that $\int^\infty_0 e^{-t/T}
|\zeta(1/2+it)|^4dt = TQ_4(\log T)+O(T^c)$ with $c = 8/9+\varepsilon$,
where $Q_4(y)$ is a suitable polynomial in $y$ of degree four. We
improve Atkinson's result by showing that $c=1/2$ is possible, and we
provide explicit expressions for all the coefficients of $Q_4(y)$ and
the closely related polynomial $P_4(y)$.
Classification :
11M06
@article{PIM_1995_N_S_57_71_a10,
author = {Aleksandar Ivi\'c},
title = {On the {Fourth} {Moment} of the {Riemann} {Zeta} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {101 },
publisher = {mathdoc},
volume = {_N_S_57},
number = {71},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/}
}
Aleksandar Ivić. On the Fourth Moment of the Riemann Zeta Functions. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 101 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/