On the Fourth Moment of the Riemann Zeta Functions
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 101

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Atkinson proved in 1941 that $\int^\infty_0 e^{-t/T} |\zeta(1/2+it)|^4dt = TQ_4(\log T)+O(T^c)$ with $c = 8/9+\varepsilon$, where $Q_4(y)$ is a suitable polynomial in $y$ of degree four. We improve Atkinson's result by showing that $c=1/2$ is possible, and we provide explicit expressions for all the coefficients of $Q_4(y)$ and the closely related polynomial $P_4(y)$.
Classification : 11M06
@article{PIM_1995_N_S_57_71_a10,
     author = {Aleksandar Ivi\'c},
     title = {On the {Fourth} {Moment} of the {Riemann} {Zeta} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {101 },
     publisher = {mathdoc},
     volume = {_N_S_57},
     number = {71},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/}
}
TY  - JOUR
AU  - Aleksandar Ivić
TI  - On the Fourth Moment of the Riemann Zeta Functions
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 101 
VL  - _N_S_57
IS  - 71
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/
LA  - en
ID  - PIM_1995_N_S_57_71_a10
ER  - 
%0 Journal Article
%A Aleksandar Ivić
%T On the Fourth Moment of the Riemann Zeta Functions
%J Publications de l'Institut Mathématique
%D 1995
%P 101 
%V _N_S_57
%N 71
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/
%G en
%F PIM_1995_N_S_57_71_a10
Aleksandar Ivić. On the Fourth Moment of the Riemann Zeta Functions. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 101 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/