On the Fourth Moment of the Riemann Zeta Functions
Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 101 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Atkinson proved in 1941 that $\int^\infty_0 e^{-t/T} |\zeta(1/2+it)|^4dt = TQ_4(\log T)+O(T^c)$ with $c = 8/9+\varepsilon$, where $Q_4(y)$ is a suitable polynomial in $y$ of degree four. We improve Atkinson's result by showing that $c=1/2$ is possible, and we provide explicit expressions for all the coefficients of $Q_4(y)$ and the closely related polynomial $P_4(y)$.
Classification : 11M06
@article{PIM_1995_N_S_57_71_a10,
     author = {Aleksandar Ivi\'c},
     title = {On the {Fourth} {Moment} of the {Riemann} {Zeta} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {101 },
     publisher = {mathdoc},
     volume = {_N_S_57},
     number = {71},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/}
}
TY  - JOUR
AU  - Aleksandar Ivić
TI  - On the Fourth Moment of the Riemann Zeta Functions
JO  - Publications de l'Institut Mathématique
PY  - 1995
SP  - 101 
VL  - _N_S_57
IS  - 71
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/
LA  - en
ID  - PIM_1995_N_S_57_71_a10
ER  - 
%0 Journal Article
%A Aleksandar Ivić
%T On the Fourth Moment of the Riemann Zeta Functions
%J Publications de l'Institut Mathématique
%D 1995
%P 101 
%V _N_S_57
%N 71
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/
%G en
%F PIM_1995_N_S_57_71_a10
Aleksandar Ivić. On the Fourth Moment of the Riemann Zeta Functions. Publications de l'Institut Mathématique, _N_S_57 (1995) no. 71, p. 101 . http://geodesic.mathdoc.fr/item/PIM_1995_N_S_57_71_a10/