Multipliers of Mixed-norm Sequence Spaces and Measures of Noncompactness
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 61
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $l^{p,q}$, $1\le p,\,q\le\infty$, be the mixed-norm
sequence space. We investigate the Hausdorff measure of noncompactness
of the operator $T_\lambda:l^{r,s}\mapsto l^{u,v}$, defined by the
multiplier $T_\lambda(a)=\{\lambda_na_n\}$, $\lambda=\{\lambda_n\}\in
l^\infty$, $a=\{a_n\}\in l^{r,s}$, and prove necessary and sufficient
conditions for $T_\lambda$ to be a compact.
Classification :
30B10 47B07
@article{PIM_1994_N_S_56_70_a7,
author = {Ivan Jovanovi\'c and Vladimir Rako\v{c}evi\'c},
title = {Multipliers of {Mixed-norm} {Sequence} {Spaces} and {Measures} of {Noncompactness}},
journal = {Publications de l'Institut Math\'ematique},
pages = {61 },
year = {1994},
volume = {_N_S_56},
number = {70},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a7/}
}
TY - JOUR AU - Ivan Jovanović AU - Vladimir Rakočević TI - Multipliers of Mixed-norm Sequence Spaces and Measures of Noncompactness JO - Publications de l'Institut Mathématique PY - 1994 SP - 61 VL - _N_S_56 IS - 70 UR - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a7/ LA - en ID - PIM_1994_N_S_56_70_a7 ER -
Ivan Jovanović; Vladimir Rakočević. Multipliers of Mixed-norm Sequence Spaces and Measures of Noncompactness. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 61 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a7/