Sur L'itere de sin(x)
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 41

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We show that the asymptotic expansion of the sequence $x_n = \sin x_{n-1}$ with $x_0 = x(x\in]0,\pi[)$, as $n$ goes to $+\infty$, uses a family of polynomials (with rational coefficients) which are linked by relations of recurrency. The study applies to a large class of sequences. We finish by a sharp study of the sinus function.
Classification : 10H25 41A10
@article{PIM_1994_N_S_56_70_a5,
     author = {Farid Bencherif and Guy Robin},
     title = {Sur {L'itere} de sin(x)},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {41 },
     publisher = {mathdoc},
     volume = {_N_S_56},
     number = {70},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a5/}
}
TY  - JOUR
AU  - Farid Bencherif
AU  - Guy Robin
TI  - Sur L'itere de sin(x)
JO  - Publications de l'Institut Mathématique
PY  - 1994
SP  - 41 
VL  - _N_S_56
IS  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a5/
LA  - en
ID  - PIM_1994_N_S_56_70_a5
ER  - 
%0 Journal Article
%A Farid Bencherif
%A Guy Robin
%T Sur L'itere de sin(x)
%J Publications de l'Institut Mathématique
%D 1994
%P 41 
%V _N_S_56
%N 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a5/
%G en
%F PIM_1994_N_S_56_70_a5
Farid Bencherif; Guy Robin. Sur L'itere de sin(x). Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 41 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a5/