Sur L'itere de sin(x)
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 41
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We show that the asymptotic expansion of the sequence
$x_n = \sin x_{n-1}$ with $x_0 = x(x\in]0,\pi[)$, as $n$ goes to
$+\infty$, uses a family of polynomials (with rational coefficients)
which are linked by relations of recurrency. The study applies to a
large class of sequences. We finish by a sharp study of the sinus
function.
Classification :
10H25 41A10
@article{PIM_1994_N_S_56_70_a5,
author = {Farid Bencherif and Guy Robin},
title = {Sur {L'itere} de sin(x)},
journal = {Publications de l'Institut Math\'ematique},
pages = {41 },
publisher = {mathdoc},
volume = {_N_S_56},
number = {70},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a5/}
}
Farid Bencherif; Guy Robin. Sur L'itere de sin(x). Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 41 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a5/