Sur L'itere de sin(x)
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 41 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We show that the asymptotic expansion of the sequence $x_n = \sin x_{n-1}$ with $x_0 = x(x\in]0,\pi[)$, as $n$ goes to $+\infty$, uses a family of polynomials (with rational coefficients) which are linked by relations of recurrency. The study applies to a large class of sequences. We finish by a sharp study of the sinus function.
Classification : 10H25 41A10
@article{PIM_1994_N_S_56_70_a5,
     author = {Farid Bencherif and Guy Robin},
     title = {Sur {L'itere} de sin(x)},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {41 },
     publisher = {mathdoc},
     volume = {_N_S_56},
     number = {70},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a5/}
}
TY  - JOUR
AU  - Farid Bencherif
AU  - Guy Robin
TI  - Sur L'itere de sin(x)
JO  - Publications de l'Institut Mathématique
PY  - 1994
SP  - 41 
VL  - _N_S_56
IS  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a5/
LA  - en
ID  - PIM_1994_N_S_56_70_a5
ER  - 
%0 Journal Article
%A Farid Bencherif
%A Guy Robin
%T Sur L'itere de sin(x)
%J Publications de l'Institut Mathématique
%D 1994
%P 41 
%V _N_S_56
%N 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a5/
%G en
%F PIM_1994_N_S_56_70_a5
Farid Bencherif; Guy Robin. Sur L'itere de sin(x). Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 41 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a5/