On a Graph Invariant Related to the sum of all Distances in a Graph
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 18
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $W(G)$ be the sum of distances between all pairs of
vertices of a graph $G$. For an edge $e$ of $G$, connecting the
vertices $u$ and $v$, the number $n_u(e)$ counts the vertices of $G$
that lie closer to $u$ than to $v$. In this paper we consider the graph
invariant $W^\ast(G)=\sum_e n_u(e)n_v(e)$, defined for any connected
graph $G$. According to a long-known result in the theory of graph
distances, if $G$ is a tree then $W^\ast(G)=W(G)$. We establish a
number of properties of the graph invariant $W^\ast$.
Classification :
05C12
@article{PIM_1994_N_S_56_70_a2,
author = {A. Dobrynin and Ivan Gutman},
title = {On a {Graph} {Invariant} {Related} to the sum of all {Distances} in a {Graph}},
journal = {Publications de l'Institut Math\'ematique},
pages = {18 },
publisher = {mathdoc},
volume = {_N_S_56},
number = {70},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a2/}
}
TY - JOUR AU - A. Dobrynin AU - Ivan Gutman TI - On a Graph Invariant Related to the sum of all Distances in a Graph JO - Publications de l'Institut Mathématique PY - 1994 SP - 18 VL - _N_S_56 IS - 70 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a2/ LA - en ID - PIM_1994_N_S_56_70_a2 ER -
A. Dobrynin; Ivan Gutman. On a Graph Invariant Related to the sum of all Distances in a Graph. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 18 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a2/