On a Graph Invariant Related to the sum of all Distances in a Graph
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 18 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $W(G)$ be the sum of distances between all pairs of vertices of a graph $G$. For an edge $e$ of $G$, connecting the vertices $u$ and $v$, the number $n_u(e)$ counts the vertices of $G$ that lie closer to $u$ than to $v$. In this paper we consider the graph invariant $W^\ast(G)=\sum_e n_u(e)n_v(e)$, defined for any connected graph $G$. According to a long-known result in the theory of graph distances, if $G$ is a tree then $W^\ast(G)=W(G)$. We establish a number of properties of the graph invariant $W^\ast$.
Classification : 05C12
@article{PIM_1994_N_S_56_70_a2,
     author = {A. Dobrynin and Ivan Gutman},
     title = {On a {Graph} {Invariant} {Related} to the sum of all {Distances} in a {Graph}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {18 },
     publisher = {mathdoc},
     volume = {_N_S_56},
     number = {70},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a2/}
}
TY  - JOUR
AU  - A. Dobrynin
AU  - Ivan Gutman
TI  - On a Graph Invariant Related to the sum of all Distances in a Graph
JO  - Publications de l'Institut Mathématique
PY  - 1994
SP  - 18 
VL  - _N_S_56
IS  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a2/
LA  - en
ID  - PIM_1994_N_S_56_70_a2
ER  - 
%0 Journal Article
%A A. Dobrynin
%A Ivan Gutman
%T On a Graph Invariant Related to the sum of all Distances in a Graph
%J Publications de l'Institut Mathématique
%D 1994
%P 18 
%V _N_S_56
%N 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a2/
%G en
%F PIM_1994_N_S_56_70_a2
A. Dobrynin; Ivan Gutman. On a Graph Invariant Related to the sum of all Distances in a Graph. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 18 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a2/