On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 102 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

On an almost cosymplectic manifold we define a new modified contact Bochner curvature tensor field which is invariant with respect to $D$-homothetic deformation. Then we generalize a theorem of Olszak [5] and describe some manifolds with vanishing its new modified contact Bochner curvature tensor field.
Classification : 53C15 53C25
Keywords: almost cosymplectic manifold, cosymplectic manifold, $D$-homothetic deformation
@article{PIM_1994_N_S_56_70_a13,
     author = {Hiroshi Endo},
     title = {On the {Ac-contact} {Bochner} {Curvature} {Tensor} {Field} on {Almost} {Cosymplectic} {Manifolds}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {102 },
     publisher = {mathdoc},
     volume = {_N_S_56},
     number = {70},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/}
}
TY  - JOUR
AU  - Hiroshi Endo
TI  - On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds
JO  - Publications de l'Institut Mathématique
PY  - 1994
SP  - 102 
VL  - _N_S_56
IS  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/
LA  - en
ID  - PIM_1994_N_S_56_70_a13
ER  - 
%0 Journal Article
%A Hiroshi Endo
%T On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds
%J Publications de l'Institut Mathématique
%D 1994
%P 102 
%V _N_S_56
%N 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/
%G en
%F PIM_1994_N_S_56_70_a13
Hiroshi Endo. On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 102 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/