On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 102
On an almost cosymplectic manifold we define a new modified
contact Bochner curvature tensor field which is invariant with respect
to $D$-homothetic deformation. Then we generalize a theorem of Olszak
[5] and describe some manifolds with vanishing its new modified contact
Bochner curvature tensor field.
Classification :
53C15 53C25
Keywords: almost cosymplectic manifold, cosymplectic manifold, $D$-homothetic deformation
Keywords: almost cosymplectic manifold, cosymplectic manifold, $D$-homothetic deformation
@article{PIM_1994_N_S_56_70_a13,
author = {Hiroshi Endo},
title = {On the {Ac-contact} {Bochner} {Curvature} {Tensor} {Field} on {Almost} {Cosymplectic} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {102 },
year = {1994},
volume = {_N_S_56},
number = {70},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/}
}
TY - JOUR AU - Hiroshi Endo TI - On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds JO - Publications de l'Institut Mathématique PY - 1994 SP - 102 VL - _N_S_56 IS - 70 UR - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/ LA - en ID - PIM_1994_N_S_56_70_a13 ER -
Hiroshi Endo. On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 102 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/