On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 102

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

On an almost cosymplectic manifold we define a new modified contact Bochner curvature tensor field which is invariant with respect to $D$-homothetic deformation. Then we generalize a theorem of Olszak [5] and describe some manifolds with vanishing its new modified contact Bochner curvature tensor field.
Classification : 53C15 53C25
Keywords: almost cosymplectic manifold, cosymplectic manifold, $D$-homothetic deformation
@article{PIM_1994_N_S_56_70_a13,
     author = {Hiroshi Endo},
     title = {On the {Ac-contact} {Bochner} {Curvature} {Tensor} {Field} on {Almost} {Cosymplectic} {Manifolds}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {102 },
     publisher = {mathdoc},
     volume = {_N_S_56},
     number = {70},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/}
}
TY  - JOUR
AU  - Hiroshi Endo
TI  - On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds
JO  - Publications de l'Institut Mathématique
PY  - 1994
SP  - 102 
VL  - _N_S_56
IS  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/
LA  - en
ID  - PIM_1994_N_S_56_70_a13
ER  - 
%0 Journal Article
%A Hiroshi Endo
%T On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds
%J Publications de l'Institut Mathématique
%D 1994
%P 102 
%V _N_S_56
%N 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/
%G en
%F PIM_1994_N_S_56_70_a13
Hiroshi Endo. On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 102 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/