On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 102
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
On an almost cosymplectic manifold we define a new modified
contact Bochner curvature tensor field which is invariant with respect
to $D$-homothetic deformation. Then we generalize a theorem of Olszak
[5] and describe some manifolds with vanishing its new modified contact
Bochner curvature tensor field.
Classification :
53C15 53C25
Keywords: almost cosymplectic manifold, cosymplectic manifold, $D$-homothetic deformation
Keywords: almost cosymplectic manifold, cosymplectic manifold, $D$-homothetic deformation
@article{PIM_1994_N_S_56_70_a13,
author = {Hiroshi Endo},
title = {On the {Ac-contact} {Bochner} {Curvature} {Tensor} {Field} on {Almost} {Cosymplectic} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {102 },
publisher = {mathdoc},
volume = {_N_S_56},
number = {70},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/}
}
TY - JOUR AU - Hiroshi Endo TI - On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds JO - Publications de l'Institut Mathématique PY - 1994 SP - 102 VL - _N_S_56 IS - 70 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/ LA - en ID - PIM_1994_N_S_56_70_a13 ER -
Hiroshi Endo. On the Ac-contact Bochner Curvature Tensor Field on Almost Cosymplectic Manifolds. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 102 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a13/