Regular and T-fredholm Elements in Banach Algebras
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 90
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $T:A\to B$ be an algebra homomorphism of a Banach
algebra $A$ to an algebra $B$. An element $a\in A$ is $T$--Fredholm [2]
if $T(A)\in B^{-1}$ and $a\in A$ is regular [3] provided there is an
element $a'\in A$ such that $a=aa'a$. We investigate regular and
$T$-Fredholm elements in Banach algebras. As a corollary, we get a well
known result [5, Theorem 3].
Classification :
47A53
@article{PIM_1994_N_S_56_70_a11,
author = {Dragan S. {\DJ}or{\dj}evi\'c},
title = {Regular and {T-fredholm} {Elements} in {Banach} {Algebras}},
journal = {Publications de l'Institut Math\'ematique},
pages = {90 },
publisher = {mathdoc},
volume = {_N_S_56},
number = {70},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a11/}
}
Dragan S. Đorđević. Regular and T-fredholm Elements in Banach Algebras. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 90 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a11/