On Imbeddings of Weighted Sobolev Spaces on an Unbounded Domain
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 79 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We obtained (necessary and sufficient) conditions on the weight functions $v_0$, $v_1$ and $w$ for the imbedding $W^{1,p} (\Omega; v_0, v_1) \hookrightarrow W^{1,p}(\Omega; w)$ where $\Omega$ is an unbounded domain with nonempty boundary. It is shown that in the case when $v_0 = v_1$ the imbedding holds under weaker conditions.
Classification : 46E35
@article{PIM_1994_N_S_56_70_a10,
     author = {Pankaj Jain},
     title = {On {Imbeddings} of {Weighted} {Sobolev} {Spaces} on an {Unbounded} {Domain}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {79 },
     publisher = {mathdoc},
     volume = {_N_S_56},
     number = {70},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a10/}
}
TY  - JOUR
AU  - Pankaj Jain
TI  - On Imbeddings of Weighted Sobolev Spaces on an Unbounded Domain
JO  - Publications de l'Institut Mathématique
PY  - 1994
SP  - 79 
VL  - _N_S_56
IS  - 70
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a10/
LA  - en
ID  - PIM_1994_N_S_56_70_a10
ER  - 
%0 Journal Article
%A Pankaj Jain
%T On Imbeddings of Weighted Sobolev Spaces on an Unbounded Domain
%J Publications de l'Institut Mathématique
%D 1994
%P 79 
%V _N_S_56
%N 70
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a10/
%G en
%F PIM_1994_N_S_56_70_a10
Pankaj Jain. On Imbeddings of Weighted Sobolev Spaces on an Unbounded Domain. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 79 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a10/