On Imbeddings of Weighted Sobolev Spaces on an Unbounded Domain
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 79
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We obtained (necessary and sufficient) conditions on the
weight functions $v_0$, $v_1$ and $w$ for the imbedding
$W^{1,p} (\Omega; v_0, v_1) \hookrightarrow W^{1,p}(\Omega; w)$ where
$\Omega$ is an unbounded domain with nonempty boundary. It is shown
that in the case when $v_0 = v_1$ the imbedding holds under weaker
conditions.
Classification :
46E35
@article{PIM_1994_N_S_56_70_a10,
author = {Pankaj Jain},
title = {On {Imbeddings} of {Weighted} {Sobolev} {Spaces} on an {Unbounded} {Domain}},
journal = {Publications de l'Institut Math\'ematique},
pages = {79 },
publisher = {mathdoc},
volume = {_N_S_56},
number = {70},
year = {1994},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a10/}
}
Pankaj Jain. On Imbeddings of Weighted Sobolev Spaces on an Unbounded Domain. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 79 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a10/