On Imbeddings of Weighted Sobolev Spaces on an Unbounded Domain
Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 79
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We obtained (necessary and sufficient) conditions on the
weight functions $v_0$, $v_1$ and $w$ for the imbedding
$W^{1,p} (\Omega; v_0, v_1) \hookrightarrow W^{1,p}(\Omega; w)$ where
$\Omega$ is an unbounded domain with nonempty boundary. It is shown
that in the case when $v_0 = v_1$ the imbedding holds under weaker
conditions.
Classification :
46E35
@article{PIM_1994_N_S_56_70_a10,
author = {Pankaj Jain},
title = {On {Imbeddings} of {Weighted} {Sobolev} {Spaces} on an {Unbounded} {Domain}},
journal = {Publications de l'Institut Math\'ematique},
pages = {79 },
year = {1994},
volume = {_N_S_56},
number = {70},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a10/}
}
Pankaj Jain. On Imbeddings of Weighted Sobolev Spaces on an Unbounded Domain. Publications de l'Institut Mathématique, _N_S_56 (1994) no. 70, p. 79 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_56_70_a10/