A Proof of Bárány's Theorem
Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 47 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We give a new proof of the following theorem of I. Bárány and L. Lowasz: Let $\Cal S_1,\Cal S_2,\dots,\Cal S_{d+1}$ be finite nonempty families of convex sets from $R^d$ and suppose that for any choice $C_1\in\Cal S_1,\dots,C_{d+1}\in\Cal S_{d+1}$ the intersection $C_i$ is not empty. Then for some $i=1,\dots,d+1$ all the sets in family $S_i$ have a common point.
Classification : 52A35
@article{PIM_1994_N_S_55_69_a6,
     author = {\v{Z}ana Kovijani\'c},
     title = {A {Proof} of {B\'ar\'any's} {Theorem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {47 },
     publisher = {mathdoc},
     volume = {_N_S_55},
     number = {69},
     year = {1994},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a6/}
}
TY  - JOUR
AU  - Žana Kovijanić
TI  - A Proof of Bárány's Theorem
JO  - Publications de l'Institut Mathématique
PY  - 1994
SP  - 47 
VL  - _N_S_55
IS  - 69
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a6/
LA  - en
ID  - PIM_1994_N_S_55_69_a6
ER  - 
%0 Journal Article
%A Žana Kovijanić
%T A Proof of Bárány's Theorem
%J Publications de l'Institut Mathématique
%D 1994
%P 47 
%V _N_S_55
%N 69
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a6/
%G en
%F PIM_1994_N_S_55_69_a6
Žana Kovijanić. A Proof of Bárány's Theorem. Publications de l'Institut Mathématique, _N_S_55 (1994) no. 69, p. 47 . http://geodesic.mathdoc.fr/item/PIM_1994_N_S_55_69_a6/