Generalized Hermite Polynomials
Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 69
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider a new generalization of the classical Hermite
polynomials and prove the basic characteristics of such polynomials
$h^{\lambda}_{n,m}(x)$ (the generating function, an explicit
representation, some recurrence relations, and the corresponding
differential equation). For $m=2$, the polynomial
$h^{\lambda}_{n,m}(x)$ reduces to $H_n(x,{\lambda})/n!$, where
$H_n(x,{\lambda})$ is the Hermite polynomial with a parameter. For
$\lambda = 1$, $h^l_{n,2}(x) = H_n(x)/n!$, where $H_n(x)$ is the
classical Hermite polynomial. Taking $\lambda=1$ and $n=mN+q$, where
$N=[n/m]$ and $0\leq q\leq m-1$, we introduce the polynomials
$P_N^{(m,q)}(t)$ by $h^l_{n,m}(x) = (2x)^q P_N^{(m,q)}((2x)^m)$, and
prove that they satisfy an $(m+1)$-term linear recurrence relation.
Classification :
33C55
@article{PIM_1993_N_S_53_67_a8,
author = {Gospava B. {\DJ}or{\dj}evi\'c},
title = {Generalized {Hermite} {Polynomials}},
journal = {Publications de l'Institut Math\'ematique},
pages = {69 },
publisher = {mathdoc},
volume = {_N_S_53},
number = {67},
year = {1993},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a8/}
}
Gospava B. Đorđević. Generalized Hermite Polynomials. Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 69 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a8/