Generalized Hermite Polynomials
Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 69 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We consider a new generalization of the classical Hermite polynomials and prove the basic characteristics of such polynomials $h^{\lambda}_{n,m}(x)$ (the generating function, an explicit representation, some recurrence relations, and the corresponding differential equation). For $m=2$, the polynomial $h^{\lambda}_{n,m}(x)$ reduces to $H_n(x,{\lambda})/n!$, where $H_n(x,{\lambda})$ is the Hermite polynomial with a parameter. For $\lambda = 1$, $h^l_{n,2}(x) = H_n(x)/n!$, where $H_n(x)$ is the classical Hermite polynomial. Taking $\lambda=1$ and $n=mN+q$, where $N=[n/m]$ and $0\leq q\leq m-1$, we introduce the polynomials $P_N^{(m,q)}(t)$ by $h^l_{n,m}(x) = (2x)^q P_N^{(m,q)}((2x)^m)$, and prove that they satisfy an $(m+1)$-term linear recurrence relation.
Classification : 33C55
@article{PIM_1993_N_S_53_67_a8,
     author = {Gospava B. {\DJ}or{\dj}evi\'c},
     title = {Generalized {Hermite} {Polynomials}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {69 },
     publisher = {mathdoc},
     volume = {_N_S_53},
     number = {67},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a8/}
}
TY  - JOUR
AU  - Gospava B. Đorđević
TI  - Generalized Hermite Polynomials
JO  - Publications de l'Institut Mathématique
PY  - 1993
SP  - 69 
VL  - _N_S_53
IS  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a8/
LA  - en
ID  - PIM_1993_N_S_53_67_a8
ER  - 
%0 Journal Article
%A Gospava B. Đorđević
%T Generalized Hermite Polynomials
%J Publications de l'Institut Mathématique
%D 1993
%P 69 
%V _N_S_53
%N 67
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a8/
%G en
%F PIM_1993_N_S_53_67_a8
Gospava B. Đorđević. Generalized Hermite Polynomials. Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 69 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a8/