Theorems Concerning Certain Special Tensor Fields on Riemannian Manifolds
Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 115
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $M$ be an $n$-dimensional Riemannian manifold and $F$ a
symmetric $(0,2)$-tensor field on $M$, which satisfies the condition
$R\cdot F=0$. Let, additionally, $H$, $A$ and $B$ be symmetric
$(0,2)$-tensor fields on $M$. If the tensor $B$ commutes with $F$ (cf.
(1.3)) and $H$ satisfies the condition $R\cdot H=Q(A,B)$, then
$
(A_{jk} - \frac{\tr(A)}{\tr(B)}B_{jk})
(B_{ir} F^r_{ m} - \frac{\tr(B,F)}{\tr(B)}B_{im}) = 0
$
on the open subset of $M$ on which $\tr(B)\ne 0$. It is also proved
that, in certain separately Einstein manifolds, null geodesic
collineation and projective collineations reduce to motions.
Classification :
53B20 53C20
@article{PIM_1993_N_S_53_67_a15,
author = {Czeslaw Konopka},
title = {Theorems {Concerning} {Certain} {Special} {Tensor} {Fields} on {Riemannian} {Manifolds}},
journal = {Publications de l'Institut Math\'ematique},
pages = {115 },
year = {1993},
volume = {_N_S_53},
number = {67},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a15/}
}
Czeslaw Konopka. Theorems Concerning Certain Special Tensor Fields on Riemannian Manifolds. Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 115 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a15/