Theorems Concerning Certain Special Tensor Fields on Riemannian Manifolds
Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 115 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $M$ be an $n$-dimensional Riemannian manifold and $F$ a symmetric $(0,2)$-tensor field on $M$, which satisfies the condition $R\cdot F=0$. Let, additionally, $H$, $A$ and $B$ be symmetric $(0,2)$-tensor fields on $M$. If the tensor $B$ commutes with $F$ (cf. (1.3)) and $H$ satisfies the condition $R\cdot H=Q(A,B)$, then $ (A_{jk} - \frac{\tr(A)}{\tr(B)}B_{jk}) (B_{ir} F^r_{ m} - \frac{\tr(B,F)}{\tr(B)}B_{im}) = 0 $ on the open subset of $M$ on which $\tr(B)\ne 0$. It is also proved that, in certain separately Einstein manifolds, null geodesic collineation and projective collineations reduce to motions.
Classification : 53B20 53C20
@article{PIM_1993_N_S_53_67_a15,
     author = {Czeslaw Konopka},
     title = {Theorems {Concerning} {Certain} {Special} {Tensor} {Fields} on {Riemannian} {Manifolds}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {115 },
     publisher = {mathdoc},
     volume = {_N_S_53},
     number = {67},
     year = {1993},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a15/}
}
TY  - JOUR
AU  - Czeslaw Konopka
TI  - Theorems Concerning Certain Special Tensor Fields on Riemannian Manifolds
JO  - Publications de l'Institut Mathématique
PY  - 1993
SP  - 115 
VL  - _N_S_53
IS  - 67
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a15/
LA  - en
ID  - PIM_1993_N_S_53_67_a15
ER  - 
%0 Journal Article
%A Czeslaw Konopka
%T Theorems Concerning Certain Special Tensor Fields on Riemannian Manifolds
%J Publications de l'Institut Mathématique
%D 1993
%P 115 
%V _N_S_53
%N 67
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a15/
%G en
%F PIM_1993_N_S_53_67_a15
Czeslaw Konopka. Theorems Concerning Certain Special Tensor Fields on Riemannian Manifolds. Publications de l'Institut Mathématique, _N_S_53 (1993) no. 67, p. 115 . http://geodesic.mathdoc.fr/item/PIM_1993_N_S_53_67_a15/