Best Coapproximation in Metric Spaces
Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 71 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

As a counterpart to best approximation, the concept of best coapproximation in normed linear spaces was introduced by C. Franchetti and M. Furi [2] in 1972. This study was subsequently pursued in normed linear spaces and Hilbert spaces by H. Behrens, L. Hetzelt, P. L. Papini, Geetha S. Rao, Ivan Singer, U. Westphal, the author and a few others (see e.g. [3], [5], [7]). In this paper we discuss best coapproximation in metric spaces there by generalizing some of the results proved in [3], [7] and [8].
Classification : 41A65 41A50
@article{PIM_1992_N_S_51_65_a7,
     author = {T. D. Narang},
     title = {Best {Coapproximation} in {Metric} {Spaces}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {71 },
     publisher = {mathdoc},
     volume = {_N_S_51},
     number = {65},
     year = {1992},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a7/}
}
TY  - JOUR
AU  - T. D. Narang
TI  - Best Coapproximation in Metric Spaces
JO  - Publications de l'Institut Mathématique
PY  - 1992
SP  - 71 
VL  - _N_S_51
IS  - 65
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a7/
LA  - en
ID  - PIM_1992_N_S_51_65_a7
ER  - 
%0 Journal Article
%A T. D. Narang
%T Best Coapproximation in Metric Spaces
%J Publications de l'Institut Mathématique
%D 1992
%P 71 
%V _N_S_51
%N 65
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a7/
%G en
%F PIM_1992_N_S_51_65_a7
T. D. Narang. Best Coapproximation in Metric Spaces. Publications de l'Institut Mathématique, _N_S_51 (1992) no. 65, p. 71 . http://geodesic.mathdoc.fr/item/PIM_1992_N_S_51_65_a7/