Necessary Conditions in a Problem of Calculus of Variations
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 143 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Problem of the calculus of variations with Bolza functionals is considered. Constraints are of both types: equalities and inequalities. The Lagrange multipler rule type theorem, which gives necessary conditions for weak optimality, is proved. When applied to the simplest problem of the calculus of variations , this theorem gives that every smooth minimizing function must satisfy the well known Euler equation and also the differential equation $ (d/dt) (L_{\dot x}\dot x-L)=-L_t. $ It should be emphasized that both differential equations are obtained under the only condition that integrand $L$ is continuously differentiable.
Classification : 49B10
Keywords: Bolza functional, weak optimality, Lagrange multipliers
@article{PIM_1989_N_S_45_59_a21,
     author = {Vladimir Jankovi\'c},
     title = {Necessary {Conditions} in a {Problem} of {Calculus} of {Variations}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {143 },
     publisher = {mathdoc},
     volume = {_N_S_45},
     number = {59},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a21/}
}
TY  - JOUR
AU  - Vladimir Janković
TI  - Necessary Conditions in a Problem of Calculus of Variations
JO  - Publications de l'Institut Mathématique
PY  - 1989
SP  - 143 
VL  - _N_S_45
IS  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a21/
LA  - en
ID  - PIM_1989_N_S_45_59_a21
ER  - 
%0 Journal Article
%A Vladimir Janković
%T Necessary Conditions in a Problem of Calculus of Variations
%J Publications de l'Institut Mathématique
%D 1989
%P 143 
%V _N_S_45
%N 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a21/
%G en
%F PIM_1989_N_S_45_59_a21
Vladimir Janković. Necessary Conditions in a Problem of Calculus of Variations. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 143 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a21/