An Improved Constant for the Muntz-Jackson Theorem
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 103 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We improve a Newman result [2,3] from 1974 concerning approximation of a continuous function by generalized polynomials. He proved that every $f\in C[0,1]$ there exists a generalized polynomial $P(x)=\sum_{k=0}^N c_kx^{\lambda k}$ such that $ |f(x)-P(x)| łeq Aw_f(\varepsilon),\qquad x\in [0,1]\tag 1 $ holds. Here $0=\lambda_0\lambda_1\cdots\lambda_N$ are given numbers $w_f$ is the modulus of continuity of $f$, $\varepsilon=\max\{|B(z)/z|: Re\, z=1\}$, $B(z)$ is the Blaschke product corresponding to the above set of $\lambda_k$'s and $A$ is a constant. Newman [2] proved that (1) holds with $A=368$. We show that (1) is valid with $A=66$. We prove this by slightly modifying Newman's proof and choosing the size of an interval, to which a suitable contradiction is extended, optimally.
Classification : 41A30 41A25
@article{PIM_1989_N_S_45_59_a15,
     author = {H. N. Odogwu},
     title = {An {Improved} {Constant} for the {Muntz-Jackson} {Theorem}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {103 },
     publisher = {mathdoc},
     volume = {_N_S_45},
     number = {59},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a15/}
}
TY  - JOUR
AU  - H. N. Odogwu
TI  - An Improved Constant for the Muntz-Jackson Theorem
JO  - Publications de l'Institut Mathématique
PY  - 1989
SP  - 103 
VL  - _N_S_45
IS  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a15/
LA  - en
ID  - PIM_1989_N_S_45_59_a15
ER  - 
%0 Journal Article
%A H. N. Odogwu
%T An Improved Constant for the Muntz-Jackson Theorem
%J Publications de l'Institut Mathématique
%D 1989
%P 103 
%V _N_S_45
%N 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a15/
%G en
%F PIM_1989_N_S_45_59_a15
H. N. Odogwu. An Improved Constant for the Muntz-Jackson Theorem. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 103 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a15/