Note on Generalizing Pregroups
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 77
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $P$ be a pree which satisfies the first four axioms of
Stallings' pregroup. Then the following three axioms are equivalent:
\item{[K]} If $ab, bc$ and $cd$ are defined, and $(ab)(cd)$ is defined,
then $(ab)c$ or $(bc)d$ is defined.
\item{[L]} Suppose $V=[x, y]$ is reduced and suppose $y=ab=cd$ where
$xa$ and $xc$ are defined. Then $a^{-1}c$ is defined.
\item{[M]} Suppose $W=[x, y, z]$ is reduced. Then $W$ is not reducible
to a word of length one.
Classification :
20E06
@article{PIM_1989_N_S_45_59_a10,
author = {Seymour Lipschutz},
title = {Note on {Generalizing} {Pregroups}},
journal = {Publications de l'Institut Math\'ematique},
pages = {77 },
publisher = {mathdoc},
volume = {_N_S_45},
number = {59},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a10/}
}
Seymour Lipschutz. Note on Generalizing Pregroups. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 77 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a10/