Maximal Canonical Graphs with Three Negative Eigenvalues
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 7
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A connected graph $G$ is called canonical if no two of its
nonadjacent vertices have the same neighbours in $G$. Let $C(3)$ be the
class of all nonisomorphic canonical graphs with exactly 3 negative
eigenvalues (including also their multiplicities). In this paper we
prove that the class $C(3)$ contains exactly 32 maximal graphs with
respect to relation to be induced subgraph. The orders of these graphs
run over the set $\{9, 10, 11, 12, 13, 14\}$.
Classification :
05C50
@article{PIM_1989_N_S_45_59_a1,
author = {Aleksandar Torga\v{s}ev},
title = {Maximal {Canonical} {Graphs} with {Three} {Negative} {Eigenvalues}},
journal = {Publications de l'Institut Math\'ematique},
pages = {7 },
publisher = {mathdoc},
volume = {_N_S_45},
number = {59},
year = {1989},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a1/}
}
Aleksandar Torgašev. Maximal Canonical Graphs with Three Negative Eigenvalues. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 7 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a1/