Maximal Canonical Graphs with Three Negative Eigenvalues
Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 7 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A connected graph $G$ is called canonical if no two of its nonadjacent vertices have the same neighbours in $G$. Let $C(3)$ be the class of all nonisomorphic canonical graphs with exactly 3 negative eigenvalues (including also their multiplicities). In this paper we prove that the class $C(3)$ contains exactly 32 maximal graphs with respect to relation to be induced subgraph. The orders of these graphs run over the set $\{9, 10, 11, 12, 13, 14\}$.
Classification : 05C50
@article{PIM_1989_N_S_45_59_a1,
     author = {Aleksandar Torga\v{s}ev},
     title = {Maximal {Canonical} {Graphs} with {Three} {Negative} {Eigenvalues}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {7 },
     publisher = {mathdoc},
     volume = {_N_S_45},
     number = {59},
     year = {1989},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a1/}
}
TY  - JOUR
AU  - Aleksandar Torgašev
TI  - Maximal Canonical Graphs with Three Negative Eigenvalues
JO  - Publications de l'Institut Mathématique
PY  - 1989
SP  - 7 
VL  - _N_S_45
IS  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a1/
LA  - en
ID  - PIM_1989_N_S_45_59_a1
ER  - 
%0 Journal Article
%A Aleksandar Torgašev
%T Maximal Canonical Graphs with Three Negative Eigenvalues
%J Publications de l'Institut Mathématique
%D 1989
%P 7 
%V _N_S_45
%N 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a1/
%G en
%F PIM_1989_N_S_45_59_a1
Aleksandar Torgašev. Maximal Canonical Graphs with Three Negative Eigenvalues. Publications de l'Institut Mathématique, _N_S_45 (1989) no. 59, p. 7 . http://geodesic.mathdoc.fr/item/PIM_1989_N_S_45_59_a1/