Complex hypersurfaces of a generalized manifold
Publications de l'Institut Mathématique, _N_S_42 (1987) no. 56, p. 123
We study complex hypersurfaces of a generalized Hopf manifold (g.H.m.) using
the second fundamental form and structure equations. When the ambient manifold is conformally-
at ( P 0K-manifold) we obtain some results about the curvature of complex submanifolds and their
stability with respect to normal variations.
@article{PIM_1987_N_S_42_56_a13,
author = {Stere Ianus and K. Matsomoto and L. Ornea},
title = {Complex hypersurfaces of a generalized manifold},
journal = {Publications de l'Institut Math\'ematique},
pages = {123 },
year = {1987},
volume = {_N_S_42},
number = {56},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a13/}
}
Stere Ianus; K. Matsomoto; L. Ornea. Complex hypersurfaces of a generalized manifold. Publications de l'Institut Mathématique, _N_S_42 (1987) no. 56, p. 123 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a13/