Free Power or Width of some Kinds of Mathematical Structures
Publications de l'Institut Mathématique, _N_S_42 (1987) no. 56, p. 3 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The present work consists of 3 sections. In section 1 we have Theorem 1:1 which gives an sufficient condition to exhibit a kind of antichains in pseudotrees. In section 2 the problem of attainability of $p_sE$ is examined: since simple examples show that even in well-founded sets $W$ the number $p_s W$ might be unattained one examines the case of $p_sT$ for trees; we prove the main Theorem 2:4 and formulate ATH (Antichain Tree Hypothesis) in 2:7 and prove that ATH is implied by the RH (Ramification Hypothesis) (v. 2:8 Theorem). We stress the fact how limit regular cardinals occur in considerations in section 2. Section 3 examines $p_sT^n$ for squares, cubes and hypercubes of trees it is proved that for any index set $I$ of cardinality $>1$ the cardinal ordering of the hypercube $T^I$ is such that the number $p_sT^I$ is attained. One has the beautiful result 3:5.
Classification : 05C38
@article{PIM_1987_N_S_42_56_a0,
     author = {{\DJ}uro Kurepa},
     title = {Free {Power} or {Width} of some {Kinds} of {Mathematical} {Structures}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {3 },
     publisher = {mathdoc},
     volume = {_N_S_42},
     number = {56},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a0/}
}
TY  - JOUR
AU  - Đuro Kurepa
TI  - Free Power or Width of some Kinds of Mathematical Structures
JO  - Publications de l'Institut Mathématique
PY  - 1987
SP  - 3 
VL  - _N_S_42
IS  - 56
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a0/
LA  - en
ID  - PIM_1987_N_S_42_56_a0
ER  - 
%0 Journal Article
%A Đuro Kurepa
%T Free Power or Width of some Kinds of Mathematical Structures
%J Publications de l'Institut Mathématique
%D 1987
%P 3 
%V _N_S_42
%N 56
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a0/
%G en
%F PIM_1987_N_S_42_56_a0
Đuro Kurepa. Free Power or Width of some Kinds of Mathematical Structures. Publications de l'Institut Mathématique, _N_S_42 (1987) no. 56, p. 3 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_42_56_a0/