On the cut Locus and the Focal Locus of a Submanifold in a Riemannian Manifold II
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 119
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $M$ be a compact connected Riemannian manifold and let
$L$ be a compact connected submanifold of $M$. We show that if a point $x$
is a closest cut point of $L$ which is not a focal point of $L$, then two
different minimizing geodesics meet at an angle of $\pi$ at $x$. We also
generalize some of the results of [9].
Classification :
53B21 53C40
@article{PIM_1987_N_S_41_55_a14,
author = {Hukum Singh},
title = {On the cut {Locus} and the {Focal} {Locus} of a {Submanifold} in a {Riemannian} {Manifold} {II}},
journal = {Publications de l'Institut Math\'ematique},
pages = {119 },
publisher = {mathdoc},
volume = {_N_S_41},
number = {55},
year = {1987},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a14/}
}
TY - JOUR AU - Hukum Singh TI - On the cut Locus and the Focal Locus of a Submanifold in a Riemannian Manifold II JO - Publications de l'Institut Mathématique PY - 1987 SP - 119 VL - _N_S_41 IS - 55 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a14/ LA - en ID - PIM_1987_N_S_41_55_a14 ER -
Hukum Singh. On the cut Locus and the Focal Locus of a Submanifold in a Riemannian Manifold II. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 119 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a14/