Mercerian Theorems for Beekmann Matrices
Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 83 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A matrix $A=(a_{nk})$ is called {\it normal\/} if $a_{nk}=0$ for $k>n$ and $a_{nn}\neq 0$ for all $n$. Such a matrix has a normal inverse $A^{-1}=(\alpha_{nk})$. If Ihe inverse $A^{-1}$ of a normal and regular matrix $A$ satisfies the conditions $\alpha_{nk}\leq 0$ for $k0$ for all $n$, we call such a matrix a Beekmann matrix. Beekmann introduced those matrices and proved that for such a matrix $A$, the matrix $B=(I+\lambda A)/(1+\lambda)$ is Mercerian for $\lambda>-1$. (I is the identity matrix.) This paper extends Beekmann's theorem to the case of $R_\beta$-Mercerian matrices, $\beta>0$.
Classification : 40C05
@article{PIM_1987_N_S_41_55_a10,
     author = {Vladeta Vu\v{c}kovi\'c},
     title = {Mercerian {Theorems} for {Beekmann} {Matrices}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {83 },
     publisher = {mathdoc},
     volume = {_N_S_41},
     number = {55},
     year = {1987},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a10/}
}
TY  - JOUR
AU  - Vladeta Vučković
TI  - Mercerian Theorems for Beekmann Matrices
JO  - Publications de l'Institut Mathématique
PY  - 1987
SP  - 83 
VL  - _N_S_41
IS  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a10/
LA  - en
ID  - PIM_1987_N_S_41_55_a10
ER  - 
%0 Journal Article
%A Vladeta Vučković
%T Mercerian Theorems for Beekmann Matrices
%J Publications de l'Institut Mathématique
%D 1987
%P 83 
%V _N_S_41
%N 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a10/
%G en
%F PIM_1987_N_S_41_55_a10
Vladeta Vučković. Mercerian Theorems for Beekmann Matrices. Publications de l'Institut Mathématique, _N_S_41 (1987) no. 55, p. 83 . http://geodesic.mathdoc.fr/item/PIM_1987_N_S_41_55_a10/