On the Approximation of Continuous Functions
Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 73
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We construct a sequence $(J_n)$ of linear positive operators defined
on the space $C(K)$, $K=[a,b]$, with the properties: a)
$J_nf$ ($f\in C(K)$) is a polynomial of degree $\leq n$; b) if
$f\in C(K)$ then there exists a positive constant $C_0$ such that
$\|f-J_nf\|\leq C_0\cdot\omega(f;1/n)$, $n=1,2,\ldots$,
where $\|\cdot\|$ is the uniform norm and $\omega(f;\cdot)$ is the
modulus of continuity; c) for $f\in C(K)$ there exists a $C_1>0$
such that
$
| f(x) - (J_n f)(x) | łeq C_1 \cdot \omega \enskip
(f; \Delta_n (x)), \quad x \in K
$
where
$
\Delta_n (x) = \sqrt {(x - a) (b - x)/n} + n^{-2}, \quad
n = 1, 2, \ldots;
$
d) if $ \Delta_n^{\ast} (x) = \sqrt {(x - a) (b - x)/n} $ and
$
(J^{\ast}_n f) (x) = (J_n f) (x) + {b - x \over b - a}
[f(a) - (J_n f)(a)] + {x - a \over b - a}
[f(b) - (J_n f)(b)],
$
then for every continuous function $f:[a,b]\to R$ there exists a
positive constant $C_2$ such that
$
| f(x) - (J^{\ast}_n f)(x) | łeq C_2
\cdot \omega (f; \Delta^{\ast}_n (x)), \quad
x \in [a, b], \quad n = 1, 2, \ldots.
$
In this manner are presented constructive proofs of the well-known theorems
of Jackson [8], Timan [14] and Teljakovskii [13]. Likewise, some other
approximation properties of the operators $ (J_n) $ are investigated.
Classification :
41A35 41A36
@article{PIM_1986_N_S_40_54_a8,
author = {Alexandru Lupas},
title = {On the {Approximation} of {Continuous} {Functions}},
journal = {Publications de l'Institut Math\'ematique},
pages = {73 },
year = {1986},
volume = {_N_S_40},
number = {54},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a8/}
}
Alexandru Lupas. On the Approximation of Continuous Functions. Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 73 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a8/