On the Approximation of Continuous Functions
Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 73 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We construct a sequence $(J_n)$ of linear positive operators defined on the space $C(K)$, $K=[a,b]$, with the properties: a) $J_nf$ ($f\in C(K)$) is a polynomial of degree $\leq n$; b) if $f\in C(K)$ then there exists a positive constant $C_0$ such that $\|f-J_nf\|\leq C_0\cdot\omega(f;1/n)$, $n=1,2,\ldots$, where $\|\cdot\|$ is the uniform norm and $\omega(f;\cdot)$ is the modulus of continuity; c) for $f\in C(K)$ there exists a $C_1>0$ such that $ | f(x) - (J_n f)(x) | łeq C_1 \cdot \omega \enskip (f; \Delta_n (x)), \quad x \in K $ where $ \Delta_n (x) = \sqrt {(x - a) (b - x)/n} + n^{-2}, \quad n = 1, 2, \ldots; $ d) if $ \Delta_n^{\ast} (x) = \sqrt {(x - a) (b - x)/n} $ and $ (J^{\ast}_n f) (x) = (J_n f) (x) + {b - x \over b - a} [f(a) - (J_n f)(a)] + {x - a \over b - a} [f(b) - (J_n f)(b)], $ then for every continuous function $f:[a,b]\to R$ there exists a positive constant $C_2$ such that $ | f(x) - (J^{\ast}_n f)(x) | łeq C_2 \cdot \omega (f; \Delta^{\ast}_n (x)), \quad x \in [a, b], \quad n = 1, 2, \ldots. $ In this manner are presented constructive proofs of the well-known theorems of Jackson [8], Timan [14] and Teljakovskii [13]. Likewise, some other approximation properties of the operators $ (J_n) $ are investigated.
Classification : 41A35 41A36
@article{PIM_1986_N_S_40_54_a8,
     author = {Alexandru Lupas},
     title = {On the {Approximation} of {Continuous} {Functions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {73 },
     publisher = {mathdoc},
     volume = {_N_S_40},
     number = {54},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a8/}
}
TY  - JOUR
AU  - Alexandru Lupas
TI  - On the Approximation of Continuous Functions
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 73 
VL  - _N_S_40
IS  - 54
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a8/
LA  - en
ID  - PIM_1986_N_S_40_54_a8
ER  - 
%0 Journal Article
%A Alexandru Lupas
%T On the Approximation of Continuous Functions
%J Publications de l'Institut Mathématique
%D 1986
%P 73 
%V _N_S_40
%N 54
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a8/
%G en
%F PIM_1986_N_S_40_54_a8
Alexandru Lupas. On the Approximation of Continuous Functions. Publications de l'Institut Mathématique, _N_S_40 (1986) no. 54, p. 73 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_40_54_a8/