The Structure on a Subspace of a Space with an F(3,-1)-structure
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 165 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $\Cal M^n$ be a manifold with an $f(3,-1)$-structure of rank $r$ and let $\Cal N^{n-1}$ be a hypersurface in $\Cal M^n$. The following theorem is proved: If the dimension of $T(\Cal V^{n-1}\cap f(T \Cal N^{n-1}))_p$ is constant, say $s$, for all $p\in \Cal N^{n-1}$, then $\Cal N^{n-1}$ possesses a natural $F(3,-1)$-structure of rank $s$. It is also proved that the naturally induced $F(3,-1)$-structure is integrable if the $f(3,-1)$-structure on $\Cal M^n$ is integrable and if the transversal to $\Cal N^{n-1}$ can be found to lie in the distribution $M$.
Classification : 53C10 53C15 53C40 51H20
@article{PIM_1986_N_S_39_53_a22,
     author = {Jovanka Niki\'c},
     title = {The {Structure} on a {Subspace} of a {Space} with an {F(3,-1)-structure}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {165 },
     publisher = {mathdoc},
     volume = {_N_S_39},
     number = {53},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a22/}
}
TY  - JOUR
AU  - Jovanka Nikić
TI  - The Structure on a Subspace of a Space with an F(3,-1)-structure
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 165 
VL  - _N_S_39
IS  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a22/
LA  - en
ID  - PIM_1986_N_S_39_53_a22
ER  - 
%0 Journal Article
%A Jovanka Nikić
%T The Structure on a Subspace of a Space with an F(3,-1)-structure
%J Publications de l'Institut Mathématique
%D 1986
%P 165 
%V _N_S_39
%N 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a22/
%G en
%F PIM_1986_N_S_39_53_a22
Jovanka Nikić. The Structure on a Subspace of a Space with an F(3,-1)-structure. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 165 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a22/