The Structure on a Subspace of a Space with an F(3,-1)-structure
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 165
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Let $\Cal M^n$ be a manifold with an $f(3,-1)$-structure
of rank $r$ and let $\Cal N^{n-1}$ be a hypersurface in $\Cal M^n$. The
following theorem is proved: If the dimension of $T(\Cal V^{n-1}\cap f(T
\Cal N^{n-1}))_p$ is constant, say $s$, for all $p\in \Cal N^{n-1}$, then
$\Cal N^{n-1}$ possesses a natural $F(3,-1)$-structure of rank $s$. It is
also proved that the naturally induced $F(3,-1)$-structure is integrable if
the $f(3,-1)$-structure on $\Cal M^n$ is integrable and if the transversal
to $\Cal N^{n-1}$ can be found to lie in the distribution $M$.
Classification :
53C10 53C15 53C40 51H20
@article{PIM_1986_N_S_39_53_a22,
author = {Jovanka Niki\'c},
title = {The {Structure} on a {Subspace} of a {Space} with an {F(3,-1)-structure}},
journal = {Publications de l'Institut Math\'ematique},
pages = {165 },
publisher = {mathdoc},
volume = {_N_S_39},
number = {53},
year = {1986},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a22/}
}
Jovanka Nikić. The Structure on a Subspace of a Space with an F(3,-1)-structure. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 165 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a22/