Conditional Probability in Nonstandard Analysis
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 17 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we apply the theory of Loeb measure to conditional probability for hyperfinite Loeb spaces. We show that conditional probability $^\sim P(\cdot/A)$ on a Loeb space $(V,\frak M(^\sim P), ^\sim P)$ for $A\in^\ast\frak B(V)$, $(P(A)> 0$ and $P(A)\not\approx 0$ is a Loeb measure and for $A\in \frak M(^\sim P)$ $(^\sim P(A)>0)$ can be represented by a Loeb measure. For the case $A\in \frak M(^\sim P)$ we prove that there exists a set $C\in ^\ast\frak B(V)$ such that $^\sim P(\cdot/A)$ is equal to the Loeb conditional probability $L(P(\cdot/C))$. We introduce internal conditional probability relative to an internal subalgebra $\frak U$ of $^\ast\frak B(V)$ as in case of finite standard probability spaces. We show, analogously to a well-known probability result, that internal conditional probability $P(A/\frak U)$, $A\in ^\ast \frak B(V)$, and internal conditional expectation $E(X/\frak U)$, $X$ is $S$-integrable, are $P$-a\. s\. unique, in nonstandard sense, random variables on $(V,\frak U,P)$. Finally, we give a nonstandard characterization of conditional probability $^\sim P(A/\frak M (\frak U))$, $A\in \frak M(^\sim P)$ on a Loeb space $(V,\frak M(^\sim P), ^\sim P)$. We prove that there exists a set $C\in ^\ast \frak B(V)$ such that $P(C/\frak U)$ is the lifting of $^\sim P(A/\frak M(\frak U))$.
Classification : 03H10
@article{PIM_1986_N_S_39_53_a2,
     author = {Vesna Mu\v{s}icki-Kova\v{c}evi\'c},
     title = {Conditional {Probability} in {Nonstandard} {Analysis}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {17 },
     publisher = {mathdoc},
     volume = {_N_S_39},
     number = {53},
     year = {1986},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a2/}
}
TY  - JOUR
AU  - Vesna Mušicki-Kovačević
TI  - Conditional Probability in Nonstandard Analysis
JO  - Publications de l'Institut Mathématique
PY  - 1986
SP  - 17 
VL  - _N_S_39
IS  - 53
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a2/
LA  - en
ID  - PIM_1986_N_S_39_53_a2
ER  - 
%0 Journal Article
%A Vesna Mušicki-Kovačević
%T Conditional Probability in Nonstandard Analysis
%J Publications de l'Institut Mathématique
%D 1986
%P 17 
%V _N_S_39
%N 53
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a2/
%G en
%F PIM_1986_N_S_39_53_a2
Vesna Mušicki-Kovačević. Conditional Probability in Nonstandard Analysis. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 17 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a2/