Conditional Probability in Nonstandard Analysis
Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 17
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper we apply the theory of Loeb measure to
conditional probability for hyperfinite Loeb spaces. We show that conditional
probability $^\sim P(\cdot/A)$ on a Loeb space $(V,\frak M(^\sim P),
^\sim P)$ for $A\in^\ast\frak B(V)$, $(P(A)> 0$ and $P(A)\not\approx 0$
is a Loeb measure and for $A\in \frak M(^\sim P)$ $(^\sim P(A)>0)$ can be
represented by a Loeb measure. For the case $A\in \frak M(^\sim P)$ we
prove that there exists a set $C\in ^\ast\frak B(V)$ such that $^\sim
P(\cdot/A)$ is equal to the Loeb conditional probability $L(P(\cdot/C))$. We
introduce internal conditional probability relative to an internal subalgebra
$\frak U$ of $^\ast\frak B(V)$ as in case of finite standard probability
spaces. We show, analogously to a well-known probability result, that
internal conditional probability $P(A/\frak U)$, $A\in ^\ast \frak B(V)$,
and internal conditional expectation $E(X/\frak U)$, $X$ is $S$-integrable,
are $P$-a\. s\. unique, in nonstandard sense, random variables on $(V,\frak
U,P)$. Finally, we give a nonstandard characterization of conditional
probability $^\sim P(A/\frak M (\frak U))$, $A\in \frak M(^\sim P)$ on a Loeb
space $(V,\frak M(^\sim P), ^\sim P)$. We prove that there exists a set
$C\in ^\ast \frak B(V)$ such that $P(C/\frak U)$ is the lifting of $^\sim
P(A/\frak M(\frak U))$.
Classification :
03H10
@article{PIM_1986_N_S_39_53_a2,
author = {Vesna Mu\v{s}icki-Kova\v{c}evi\'c},
title = {Conditional {Probability} in {Nonstandard} {Analysis}},
journal = {Publications de l'Institut Math\'ematique},
pages = {17 },
year = {1986},
volume = {_N_S_39},
number = {53},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a2/}
}
Vesna Mušicki-Kovačević. Conditional Probability in Nonstandard Analysis. Publications de l'Institut Mathématique, _N_S_39 (1986) no. 53, p. 17 . http://geodesic.mathdoc.fr/item/PIM_1986_N_S_39_53_a2/