Quasi-radicals and Radicals in Categories
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 51 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In a category $\Cal K$, if $\Cal E$ is a class of epimorphisms and $\Cal M$ a class of monomorphisms, a funtion $J_r$ called an $(\Cal E, \overline{\Cal M})$-quasi-radical, is defined which assigns to an object an $\Cal M$-sink and a function $J_c$, called an $(\overline{\Cal E},\Cal M)$-quasi-coradical, is defined which assigns to an object an $\Cal E$-source. With $J_r$ are associated two object classes {\bf R}$_r$ and {\bf S}$_r$ called the quasi-radical class and the quasi-semisimple class respectively. With $J_c$ are associated two object classes {\bf R}$_c$ and {\bf S}$_c$, called the quasi-coradical class and the quasi-cosemisimple class respectively. Using these notions, an $(\Cal E,\overline{\Cal M})$-radical is a pair $(J_r,J_c)$ where $J_r$, is a quasiradical, $J_c$ a quasi-coradical and for which ${\bold R}_r={\bold R}_c$ and ${\bold S}_r={\bold S}_c$. Among others it is shown that ${\bold R}_r={\bold R}_c$ is a radical class and ${\bold S}_r= {\bold S}_c$ is a semisimple class.
Classification : 18E40
@article{PIM_1985_N_S_38_52_a9,
     author = {A. Buys and S. Veldsman},
     title = {Quasi-radicals and {Radicals} in {Categories}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {51 },
     publisher = {mathdoc},
     volume = {_N_S_38},
     number = {52},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a9/}
}
TY  - JOUR
AU  - A. Buys
AU  - S. Veldsman
TI  - Quasi-radicals and Radicals in Categories
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 51 
VL  - _N_S_38
IS  - 52
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a9/
LA  - en
ID  - PIM_1985_N_S_38_52_a9
ER  - 
%0 Journal Article
%A A. Buys
%A S. Veldsman
%T Quasi-radicals and Radicals in Categories
%J Publications de l'Institut Mathématique
%D 1985
%P 51 
%V _N_S_38
%N 52
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a9/
%G en
%F PIM_1985_N_S_38_52_a9
A. Buys; S. Veldsman. Quasi-radicals and Radicals in Categories. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 51 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a9/