On a Class of Processes with Multiplicity n=1
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 203 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $x(t)= \int\limits_a^t g(t,u)dz(u)$, $t\in T$, $T=(a,b)$ be the Cramer representation of the stochastic process $x(t)$. We extend a well-known theorem of Cramer concerning sufficient conditions for the process $x(t)$ to have multiplicity $N=1$, for the case when $x(t)$ satisfies the condition: $g(t,t)= 0$ for all $t\in T$.
@article{PIM_1985_N_S_38_52_a25,
     author = {Slobodanka Mitrovi\'c},
     title = {On a {Class} of {Processes} with {Multiplicity} n=1},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {203 },
     publisher = {mathdoc},
     volume = {_N_S_38},
     number = {52},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a25/}
}
TY  - JOUR
AU  - Slobodanka Mitrović
TI  - On a Class of Processes with Multiplicity n=1
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 203 
VL  - _N_S_38
IS  - 52
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a25/
LA  - en
ID  - PIM_1985_N_S_38_52_a25
ER  - 
%0 Journal Article
%A Slobodanka Mitrović
%T On a Class of Processes with Multiplicity n=1
%J Publications de l'Institut Mathématique
%D 1985
%P 203 
%V _N_S_38
%N 52
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a25/
%G en
%F PIM_1985_N_S_38_52_a25
Slobodanka Mitrović. On a Class of Processes with Multiplicity n=1. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 203 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a25/