A Tree Axiom
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 7
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In connection with my previous results from 1935, and results of
other mathematicians (Tarski, Erdös, Hanf, Keisler, Baumgartger$\ldots $)
the following Tree (or Dendrity) Axiom is formulated: For any regular
uncountable ordinal $n$ there exists a tree An of height (rank) $n$ such
that $|X| |n|$ for every level $X$ as well as for every subchain $X$
of An. In other words, the following assertion Dn holds: There exists a tree
$T$ such that for every regular ordinal $n>\omega_0$ the conditions
(2:0), (2:1), (2:2) hold.
@article{PIM_1985_N_S_38_52_a1,
author = {{\DJ}uro Kurepa},
title = {A {Tree} {Axiom}},
journal = {Publications de l'Institut Math\'ematique},
pages = {7 },
publisher = {mathdoc},
volume = {_N_S_38},
number = {52},
year = {1985},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a1/}
}
Đuro Kurepa. A Tree Axiom. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 7 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a1/