A Tree Axiom
Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 7 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In connection with my previous results from 1935, and results of other mathematicians (Tarski, Erdös, Hanf, Keisler, Baumgartger$\ldots $) the following Tree (or Dendrity) Axiom is formulated: For any regular uncountable ordinal $n$ there exists a tree An of height (rank) $n$ such that $|X| |n|$ for every level $X$ as well as for every subchain $X$ of An. In other words, the following assertion Dn holds: There exists a tree $T$ such that for every regular ordinal $n>\omega_0$ the conditions (2:0), (2:1), (2:2) hold.
@article{PIM_1985_N_S_38_52_a1,
     author = {{\DJ}uro Kurepa},
     title = {A {Tree} {Axiom}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {7 },
     publisher = {mathdoc},
     volume = {_N_S_38},
     number = {52},
     year = {1985},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a1/}
}
TY  - JOUR
AU  - Đuro Kurepa
TI  - A Tree Axiom
JO  - Publications de l'Institut Mathématique
PY  - 1985
SP  - 7 
VL  - _N_S_38
IS  - 52
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a1/
LA  - en
ID  - PIM_1985_N_S_38_52_a1
ER  - 
%0 Journal Article
%A Đuro Kurepa
%T A Tree Axiom
%J Publications de l'Institut Mathématique
%D 1985
%P 7 
%V _N_S_38
%N 52
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a1/
%G en
%F PIM_1985_N_S_38_52_a1
Đuro Kurepa. A Tree Axiom. Publications de l'Institut Mathématique, _N_S_38 (1985) no. 52, p. 7 . http://geodesic.mathdoc.fr/item/PIM_1985_N_S_38_52_a1/