On Quasi-Frobeniusean and Artinian Rings
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 239 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Left $p$-injective rings, which extend left self injective rings, have been considered in several papers (cf. for example, [10] -- [14]). The following generalizations of left $p$-injective rings are here introduced: (1) $A$ is called a left min-injective ring if, for any minimal left ideal $U$ of $A$ (if it exists), any left $A$-homomorphism $g: U\to A$, there exists $y\in A$ such that $g(b)= by$ for all $b\in U$; (2) $A$ is left $np$-injective if, for any non-nilpotent element $c$ of $A$, any left A-homomorphism $g: Ac\to A$, there exists $y\in A$ such that $g(ac)= acy$ for all $a\in A$. New characteristic properties of quasi-Frobeniusean rings are given. It is proved that A is quasi-Frobeniusean iff $A$ is a left Artinian, left and right min-injective ring. If $A$ is left $np$-injective, then (a) every left or right $A$-module is divisible and (b) any reduced principal left ideal of $A$ is generated by an idempotent. Further properties of left $CM$-rings (introduced in [14]) are developed. The following nice result is established : If $U$ is a minimal left ideal of a left $CM$-ring $A$, the following are then equivalent: (a) $_AU$ is injective; (b) $_AU$ is projective; (c) $_AU$ is $p$-injective. Consequently, $A$ is semi-simple Artinian iff $A$ is a left $CM$-ring with finitely generated projective essential left socle. Divison rings are also characterised. Known results are improved.
Classification : 16A30 16A35 16A36 16A40 16A52
Keywords: quasi-Frobeniusean, Artinian, von Neumann regular, min-injective, np-injective, CM-ring
@article{PIM_1983_N_S_33_47_a35,
     author = {Roger Yue Chi Ming},
     title = {On {Quasi-Frobeniusean} and {Artinian} {Rings}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {239 },
     publisher = {mathdoc},
     volume = {_N_S_33},
     number = {47},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a35/}
}
TY  - JOUR
AU  - Roger Yue Chi Ming
TI  - On Quasi-Frobeniusean and Artinian Rings
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 239 
VL  - _N_S_33
IS  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a35/
LA  - en
ID  - PIM_1983_N_S_33_47_a35
ER  - 
%0 Journal Article
%A Roger Yue Chi Ming
%T On Quasi-Frobeniusean and Artinian Rings
%J Publications de l'Institut Mathématique
%D 1983
%P 239 
%V _N_S_33
%N 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a35/
%G en
%F PIM_1983_N_S_33_47_a35
Roger Yue Chi Ming. On Quasi-Frobeniusean and Artinian Rings. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 239 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a35/