Edge-coloring of a Family of Regular Graphs
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 157 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let $G(m)$ denote the composition graph $G[mK_1]$. An obvious necessary condition for $G(m)$ to be 1-factorable is that $G$ is regular and $mp$ is even, where $p$ is the number of vertices of $G$. It is conjectured that this is also a sufficient condition. For regular $G$ it is proved that $G(m)$ is 1-factorable if at least one of the following conditions is satisfied: (a) $G$ is 1-factorable, (b) $G$ is of even degree and $m$ is even, (c) $m$ is divisible by 4, (d) $G$ has a 1-factor and $m$ is even, (e) $G$ is cubic and $m$ is even. The results are used to solve some other problems.
Classification : 05C15
Keywords: regular graph, edge-coloring, factorization
@article{PIM_1983_N_S_33_47_a21,
     author = {Bojan Mohar and Toma\v{z} Pisanski},
     title = {Edge-coloring of a {Family} of {Regular} {Graphs}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {157 },
     publisher = {mathdoc},
     volume = {_N_S_33},
     number = {47},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a21/}
}
TY  - JOUR
AU  - Bojan Mohar
AU  - Tomaž Pisanski
TI  - Edge-coloring of a Family of Regular Graphs
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 157 
VL  - _N_S_33
IS  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a21/
LA  - en
ID  - PIM_1983_N_S_33_47_a21
ER  - 
%0 Journal Article
%A Bojan Mohar
%A Tomaž Pisanski
%T Edge-coloring of a Family of Regular Graphs
%J Publications de l'Institut Mathématique
%D 1983
%P 157 
%V _N_S_33
%N 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a21/
%G en
%F PIM_1983_N_S_33_47_a21
Bojan Mohar; Tomaž Pisanski. Edge-coloring of a Family of Regular Graphs. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 157 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a21/