Two Results on Associativity of Composite Operations in Groups
Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 123

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The theorem of Hanna Neumann ([{\bf 4}]) states that all associative operations $w(x,y)$ in the case of a free $G$ are of one of the following forms: $ a, x, y, xay, yax, $ where a is an arbitrary element of $G$. In the first part of this article we generalize this result. Theorem 1 shows that operations of the forms listed above are the only possible (except trivial cases) when we require $w(x,y)$ to satisfy not the associativity law, but any consequence of it (any weakened associativity law). In the second part of the article we determine all associative operations $w(x,y)$ in the case of $G$ free nilpotent of class two.
Classification : 20A99
@article{PIM_1983_N_S_33_47_a17,
     author = {Sava Krsti\'c},
     title = {Two {Results} on {Associativity} of {Composite} {Operations} in {Groups}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {123 },
     publisher = {mathdoc},
     volume = {_N_S_33},
     number = {47},
     year = {1983},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a17/}
}
TY  - JOUR
AU  - Sava Krstić
TI  - Two Results on Associativity of Composite Operations in Groups
JO  - Publications de l'Institut Mathématique
PY  - 1983
SP  - 123 
VL  - _N_S_33
IS  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a17/
LA  - en
ID  - PIM_1983_N_S_33_47_a17
ER  - 
%0 Journal Article
%A Sava Krstić
%T Two Results on Associativity of Composite Operations in Groups
%J Publications de l'Institut Mathématique
%D 1983
%P 123 
%V _N_S_33
%N 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a17/
%G en
%F PIM_1983_N_S_33_47_a17
Sava Krstić. Two Results on Associativity of Composite Operations in Groups. Publications de l'Institut Mathématique, _N_S_33 (1983) no. 47, p. 123 . http://geodesic.mathdoc.fr/item/PIM_1983_N_S_33_47_a17/