On the Reconstruction of Latin Squares
Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 209 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We consider the following problem: Find the least integer $N(n)$ such that for arbitrary latin square $L$ of order $n$ we can choose $N(n)$ cells of that square such that after erasing the enteries occupying the remaining $n^2-N(n)$ cells the latin square $L$ can be reconstrusted uniquely. We discuss in detail the cases $n \leq 6$.
@article{PIM_1980_N_S_28_42_a26,
     author = {Ratko To\v{s}i\'c},
     title = {On the {Reconstruction} of {Latin} {Squares}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {209 },
     publisher = {mathdoc},
     volume = {_N_S_28},
     number = {42},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/}
}
TY  - JOUR
AU  - Ratko Tošić
TI  - On the Reconstruction of Latin Squares
JO  - Publications de l'Institut Mathématique
PY  - 1980
SP  - 209 
VL  - _N_S_28
IS  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/
LA  - en
ID  - PIM_1980_N_S_28_42_a26
ER  - 
%0 Journal Article
%A Ratko Tošić
%T On the Reconstruction of Latin Squares
%J Publications de l'Institut Mathématique
%D 1980
%P 209 
%V _N_S_28
%N 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/
%G en
%F PIM_1980_N_S_28_42_a26
Ratko Tošić. On the Reconstruction of Latin Squares. Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 209 . http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/