On the Reconstruction of Latin Squares
Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 209
We consider the following problem: Find the least integer
$N(n)$ such that for arbitrary latin square $L$ of order $n$ we can
choose $N(n)$ cells of that square such that after erasing the enteries
occupying the remaining $n^2-N(n)$ cells the latin square $L$ can be
reconstrusted uniquely. We discuss in detail the cases $n \leq 6$.
@article{PIM_1980_N_S_28_42_a26,
author = {Ratko To\v{s}i\'c},
title = {On the {Reconstruction} of {Latin} {Squares}},
journal = {Publications de l'Institut Math\'ematique},
pages = {209 },
year = {1980},
volume = {_N_S_28},
number = {42},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/}
}
Ratko Tošić. On the Reconstruction of Latin Squares. Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 209 . http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/