On the Reconstruction of Latin Squares
Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 209

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We consider the following problem: Find the least integer $N(n)$ such that for arbitrary latin square $L$ of order $n$ we can choose $N(n)$ cells of that square such that after erasing the enteries occupying the remaining $n^2-N(n)$ cells the latin square $L$ can be reconstrusted uniquely. We discuss in detail the cases $n \leq 6$.
@article{PIM_1980_N_S_28_42_a26,
     author = {Ratko To\v{s}i\'c},
     title = {On the {Reconstruction} of {Latin} {Squares}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {209 },
     publisher = {mathdoc},
     volume = {_N_S_28},
     number = {42},
     year = {1980},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/}
}
TY  - JOUR
AU  - Ratko Tošić
TI  - On the Reconstruction of Latin Squares
JO  - Publications de l'Institut Mathématique
PY  - 1980
SP  - 209 
VL  - _N_S_28
IS  - 42
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/
LA  - en
ID  - PIM_1980_N_S_28_42_a26
ER  - 
%0 Journal Article
%A Ratko Tošić
%T On the Reconstruction of Latin Squares
%J Publications de l'Institut Mathématique
%D 1980
%P 209 
%V _N_S_28
%N 42
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/
%G en
%F PIM_1980_N_S_28_42_a26
Ratko Tošić. On the Reconstruction of Latin Squares. Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 209 . http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/