On the Reconstruction of Latin Squares
Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 209
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We consider the following problem: Find the least integer
$N(n)$ such that for arbitrary latin square $L$ of order $n$ we can
choose $N(n)$ cells of that square such that after erasing the enteries
occupying the remaining $n^2-N(n)$ cells the latin square $L$ can be
reconstrusted uniquely. We discuss in detail the cases $n \leq 6$.
@article{PIM_1980_N_S_28_42_a26,
author = {Ratko To\v{s}i\'c},
title = {On the {Reconstruction} of {Latin} {Squares}},
journal = {Publications de l'Institut Math\'ematique},
pages = {209 },
publisher = {mathdoc},
volume = {_N_S_28},
number = {42},
year = {1980},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/}
}
Ratko Tošić. On the Reconstruction of Latin Squares. Publications de l'Institut Mathématique, _N_S_28 (1980) no. 42, p. 209 . http://geodesic.mathdoc.fr/item/PIM_1980_N_S_28_42_a26/