Irregularizability of the Dirichlet problem for one biharmonic system in $\mathbb{R}^4$
Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 40-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear homogeneous system of p first order differential equations in $\mathbb{R}^d$ is called biharmonic if each component of its arbitrary continuously differentiable solution satisfies the equation $\Delta^2u=0$, where $\Delta$ is the Laplace operator in $\mathbb{R}^d$. In this article we give an example of a biharmonic system in $\mathbb{R}^4$, which is neither a four-dimensional analogue of the Cauchy – Riemann system nor an elliptic pseudo-symmetric system. For this system we consider the Dirichlet problem in an arbitrary bounded region with a sufficiently smooth boundary. It is proved that at some point of the boundary the rank of the Lopatinski matrix of the Dirichlet problem is not maximal. It is also shown that at this point the limit problem for the considered Dirichlet problem is not uniquely solvable.
Keywords: elliptic system, Dirichlet problem, regularizable boundary value problem, Lopatinski condition.
@article{PFMT_2024_4_a5,
     author = {A. I. Basik and E. V. Gricuk and D. V. Haluts},
     title = {Irregularizability of the {Dirichlet} problem for one biharmonic system in $\mathbb{R}^4$},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {40--44},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_4_a5/}
}
TY  - JOUR
AU  - A. I. Basik
AU  - E. V. Gricuk
AU  - D. V. Haluts
TI  - Irregularizability of the Dirichlet problem for one biharmonic system in $\mathbb{R}^4$
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 40
EP  - 44
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_4_a5/
LA  - ru
ID  - PFMT_2024_4_a5
ER  - 
%0 Journal Article
%A A. I. Basik
%A E. V. Gricuk
%A D. V. Haluts
%T Irregularizability of the Dirichlet problem for one biharmonic system in $\mathbb{R}^4$
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 40-44
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_4_a5/
%G ru
%F PFMT_2024_4_a5
A. I. Basik; E. V. Gricuk; D. V. Haluts. Irregularizability of the Dirichlet problem for one biharmonic system in $\mathbb{R}^4$. Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 40-44. http://geodesic.mathdoc.fr/item/PFMT_2024_4_a5/

[1] M.S. Agranovich, “Ellipticheskie singulyarnye integro-differentsialnye operatory”, Uspekhi matematicheskikh nauk, 20:5 (1965), 3-120 | DOI | Zbl

[2] Ya.B. Lopatinskii, “Ob odnom sposobe privedeniya granichnykh zadach dlya sistemy differentsialnykh uravnenii ellipticheskogo tipa k regulyarnym integralnym uravneniyam”, Ukrainskii matematicheskii zhurnal, 5 (1953), 123-151 | Zbl

[3] L.R. Volevich, “Razreshimost kraevykh zadach dlya obschikh ellipticheskikh sistem”, Matematicheskii sbornik, 68 (110):3 (1965), 373-416 | Zbl

[4] M.Z. Solomyak, “O lineinykh ellipticheskikh sistemakh pervogo poryadka”, Doklady AN SSSR, 150:1 (1963), 48-51 | Zbl

[5] V.S. Vinogradov, “Granichnaya zadacha dlya psevdosimmetricheskikh sistem”, Differentsialnye uravneniya, 21:1 (1985), 161-163 | Zbl

[6] A.I. Basik, A.T. Uss, “O kraevykh zadachakh dlya ellipticheskikh psevdosimmetricheskikh sistem pervogo poryadka v $\mathbb{R}^4$”, Differentsialnye uravneniya, 38:3 (2003), 410-412

[7] A.T. Uss, “Gomotopicheskaya klassifikatsiya trekh- i chetyrekhmernykh analogov sistemy Koshi - Rimana”, Differentsialnye uravneniya, 40:8 (2004), 1118-1125 | Zbl

[8] V.I. Shevchenko, “Gomotopicheskaya klassifikatsiya zadach Rimana - Gilberta dlya golomorfnogo vektora”, Respublikanskii mezhvedomstvennyi sbornik, Matematicheskaya fizika, 17, Kiev, 1975, 184-186 | Zbl

[9] A.T. Uss, “Kraevaya zadacha Rimana - Gilberta dlya trekhmernykh analogov sistemy Koshi - Rimana”, Doklady NAN Belarusi, 47:6 (2003), 10-15 | Zbl

[10] A.I. Basik, E.V. Gritsuk, T.A. Gritsuk, “Zadacha Rimana - Gilberta dlya ellipticheskikh sistem ortogonalnogo tipa v $\mathbb{R}^3$”, Vestsi Natsyyanalnai akademii navuk Belarusi. Seryya fizika-matematychnykh navuk, 56:1 (2020), 7-16 | DOI | Zbl

[11] L. Khermander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965, 379 pp.

[12] I.M. Gelfand, “Ob ellipticheskikh uravneniyakh”, Uspekhi matematicheskikh nauk, 15:3 (1960), 121-132 | Zbl

[13] M.S. Agranovich, A.S. Dynin, “Obschie kraevye zadachi dlya ellipticheskikh sistem v mnogomernoi oblasti”, Doklady AN SSSR, 146:3 (1962), 511-514 | Zbl