Adaptive control system for technological operation of laser processing of brittle non-metallic materials
Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 78-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents a computer system for adaptive control of the technological operation of laser cutting of fragile non-metallic products. The procedures for synthesizing the structure of the neural regulator of the parameters of the technological operation of cutting and the automated selection of the optimal architecture of the neural network based on the specified criteria for the quality of control adaptation are described. Stabilization of the parameters of the technological operation of laser cutting by the method of thermal splitting is given on the example of processing silicate glasses with elliptical laser beams.
Keywords: control adaptation system, neural network modeling, synthesis of the structure of the neuroregulator, stabilization of the parameters of a technological operation.
@article{PFMT_2024_4_a12,
     author = {V. A. Prohorenko and Yu. V. Nikitjuk and V. S. Smorodin},
     title = {Adaptive control system for technological operation of laser processing of brittle non-metallic materials},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {78--81},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_4_a12/}
}
TY  - JOUR
AU  - V. A. Prohorenko
AU  - Yu. V. Nikitjuk
AU  - V. S. Smorodin
TI  - Adaptive control system for technological operation of laser processing of brittle non-metallic materials
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 78
EP  - 81
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_4_a12/
LA  - en
ID  - PFMT_2024_4_a12
ER  - 
%0 Journal Article
%A V. A. Prohorenko
%A Yu. V. Nikitjuk
%A V. S. Smorodin
%T Adaptive control system for technological operation of laser processing of brittle non-metallic materials
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 78-81
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_4_a12/
%G en
%F PFMT_2024_4_a12
V. A. Prohorenko; Yu. V. Nikitjuk; V. S. Smorodin. Adaptive control system for technological operation of laser processing of brittle non-metallic materials. Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 78-81. http://geodesic.mathdoc.fr/item/PFMT_2024_4_a12/

[1] V.S. Smorodin, I.V. Maksimey, Methods and means of simulation modeling of technological production processes, monograph, F. Skorina Gomel State University, Gomel, 2007, 369 pp.

[2] Yu.V. Nikityuk, Physical laws of laser thermal splitting of silicate glasses and alumina ceramics, dis. ...Cand. of Phys. and Mathematics. Sciences 01.04.21, Gomel, 2009, 165 pp.

[3] Yu.V. Nikityuk et al., “Application of Artificial Neural Networks and Finite Element Method for Determining the Parameters of Elliptic Laser Beam Treatment of Quartz Sol-Gel Glasses”, Problems of Physics, Mathematics and Technics, 2021, no. 3 (48), 30-36 | DOI

[4] Yu.V. Nikityuk et al., “Development of Software Tools for Modeling and Optimization of Laser Cutting Parameters of Brittle Non-Metallic Materials”, Problems of Physics, Mathematics and Technics, 2024, no. 3 (60), 18-22

[5] V.S. Smorodin, V.A. Prokhorenko, “Stabilization of Technological Cycle Parameters when Constructing Feedback Control”, Problems of Physics, Mathematics and Technics, 2023, no. 2 (55), 83-88

[6] V.A. Prokhorenko, “Adaptive control system for the technological cycle of automated production”, Proceedings of F. Skorina Gomel State University, 2023, no. 3 (138), 69-73

[7] V. Smorodin, V. Prokhorenko, “Stabilization of Parameters of Technological Operations in the Presence of External Control Actions”, Open semantic technologies for intelligent systems, 2024, no. 8, 263-268

[8] Susan Amin et al., A Survey of Exploration Methods in Reinforcement Learning, arXiv: 2109.00157

[9] R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction, 2-nd edition, The MIT Press, Cambridge, 2018, 552 pp. | MR