Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PFMT_2024_4_a11, author = {K. S. Kurochka and K. A. Panarin and K. S. Makeeva}, title = {Neural network model and classifier training algorithm for processing human serum gel electrophoresis data}, journal = {Problemy fiziki, matematiki i tehniki}, pages = {70--77}, publisher = {mathdoc}, number = {4}, year = {2024}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PFMT_2024_4_a11/} }
TY - JOUR AU - K. S. Kurochka AU - K. A. Panarin AU - K. S. Makeeva TI - Neural network model and classifier training algorithm for processing human serum gel electrophoresis data JO - Problemy fiziki, matematiki i tehniki PY - 2024 SP - 70 EP - 77 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PFMT_2024_4_a11/ LA - ru ID - PFMT_2024_4_a11 ER -
%0 Journal Article %A K. S. Kurochka %A K. A. Panarin %A K. S. Makeeva %T Neural network model and classifier training algorithm for processing human serum gel electrophoresis data %J Problemy fiziki, matematiki i tehniki %D 2024 %P 70-77 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/PFMT_2024_4_a11/ %G ru %F PFMT_2024_4_a11
K. S. Kurochka; K. A. Panarin; K. S. Makeeva. Neural network model and classifier training algorithm for processing human serum gel electrophoresis data. Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 70-77. http://geodesic.mathdoc.fr/item/PFMT_2024_4_a11/
[1] M.M. Sachek, I.V. Malakhova, I.I. Novik, I.P. Tserbinskaya, “Dostupnost i kachestvo meditsinskoi pomoschi kak osnovnye printsipy zdravookhraneniya Respubliki Belarus”, Materialy nauch.-prakt. konf. s mezhdunarod. uchastiem k Vsemirnomu dnyu zdorovya 2018 g., posvyaschennoi vseobschemu okhvatu uslugami zdravookhraneniya i 70-letiyu VOZ (Kiev, 2018), 161-163
[2] T. Kohonen, “The self-organizing map”, Neurocomputing, 21:1 (1998), 1-6 | DOI | MR | Zbl
[3] D.P. Kingma, Ba J. Adam, A method for stochastic optimization, 2014, arXiv: 1412.6980 | MR | Zbl
[4] V.V. Ruanet, E.Z. Kochieva, N.N. Ryzhova, “The use of a self-organizing feature map for the treatment of the results of RAPD and ISSR analyses in studies on the genomic polymorphism in the genus Capsicum L”, Russian Journal of Genetics, 41:2 (2005), 202-210 | DOI
[5] V.V. Ruanet, A.M. Kudryavtsev, S.Y. Dadashev, “The use of artificial neural networks for automatic analysis and genetic identification of gliadin electrophoretic spectra in durum wheat”, Russian Journal of Genetics, 37:10 (2001), 1207 - 1212 | DOI
[6] K.S. Kurochka, K.A. Panarin, “Algorithm for real-time binary classification of adenomas and norms images obtained by confocal microscopy”, 2020 International Conference Mechatronic Systems and Materials (MSM), 2020, 1-5 | DOI
[7] K. Jensen et al., “Classification of potato varieties using isoelectrophoretic focusing patterns, neural nets, and statistical methods”, Journal of agricultural and food chemistry, 45:1 (1997), 158-161 | DOI
[8] A.R. Eduardo, H.N. Marcello, M.R. Rangaraj, “Detection of Vertebral Plateaus in Lateral Lumbar Spinal X-ray Images with Gabor Filters”, 32th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2010, 4052-4055 | DOI
[9] H. Mobahi, S. Rao, A. Yang, S. Sastry, Y. Ma, “Segmentation of Natural Images by Texture and Boundary Compression”, International Journal of Computer Vision, 95 (2011), 86-98 | DOI
[10] R. Ohlander, K. Price, D.R. Raj, “Picture Segmentation Using a Recursive Region Splitting Method”, Computer Graphics and Image Processing, 8:3 (1978), 313-333 | DOI
[11] J. A. Canny, Computational Approach to Edge Detection, IEEE, 1986, 20 pp.
[12] J. Hurtado-Aviles, J. Roca-González, K.S. Kurochka, J.M. Sanz-Mengibar, F. Santonja-Medina, “Developing of a Mathematical Model to Perform Measurements of Axial Vertebral Rotation on Computer-Aided and Automated Diagnosis Systems, Using Raimondi's Method”, Radiology Research and Practice, 2021 (2021) | DOI
[13] K.S. Kurochka, K.A. Panarin, “Algorithm of Definition of Mutual Ar-rangement of L1-L5 Vertebrae on X-ray Images”, Optical Memory and Neural Networks, 27:3 (2018), 161-169 | DOI
[14] R. Gonsales, R. Vuds, Tsifrovaya obrabotka izobrazhenii, Tekhnosferab, M., 2012, 1104 pp.
[15] V.S. Kamyshnikov, Spravochnik po kliniko-biokhimicheskim issledovaniyam i laboratornoi diagnostike, MEDpress-inform, M., 2009, 896 pp.
[16] T. Elsken, B. Staffler, J.H. Metzen, F. Hutter, “Meta-Learning of Neural Architectures for Few-Shot Learning”, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, arXiv: 1911.11090 | MR | Zbl