Neural network model and classifier training algorithm for processing human serum gel electrophoresis data
Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 70-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The analysis of biomedical images of proteinograms obtained as a result of gel electrophoresis is a research area of current interest. As a result of the study of various methods and means of analyzing electrophoregrams, the authors proposed a resource-efficient and fast model of convolutional neural network, which allows the classification of human blood serum proteinograms with high accuracy at low requirements to computing resources of the computer.
Keywords: neural networks, computer vision, image recognition, proteinograms, electrophoresis.
@article{PFMT_2024_4_a11,
     author = {K. S. Kurochka and K. A. Panarin and K. S. Makeeva},
     title = {Neural network model and classifier training algorithm for processing human serum gel electrophoresis data},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {70--77},
     publisher = {mathdoc},
     number = {4},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_4_a11/}
}
TY  - JOUR
AU  - K. S. Kurochka
AU  - K. A. Panarin
AU  - K. S. Makeeva
TI  - Neural network model and classifier training algorithm for processing human serum gel electrophoresis data
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 70
EP  - 77
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_4_a11/
LA  - ru
ID  - PFMT_2024_4_a11
ER  - 
%0 Journal Article
%A K. S. Kurochka
%A K. A. Panarin
%A K. S. Makeeva
%T Neural network model and classifier training algorithm for processing human serum gel electrophoresis data
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 70-77
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_4_a11/
%G ru
%F PFMT_2024_4_a11
K. S. Kurochka; K. A. Panarin; K. S. Makeeva. Neural network model and classifier training algorithm for processing human serum gel electrophoresis data. Problemy fiziki, matematiki i tehniki, no. 4 (2024), pp. 70-77. http://geodesic.mathdoc.fr/item/PFMT_2024_4_a11/

[1] M.M. Sachek, I.V. Malakhova, I.I. Novik, I.P. Tserbinskaya, “Dostupnost i kachestvo meditsinskoi pomoschi kak osnovnye printsipy zdravookhraneniya Respubliki Belarus”, Materialy nauch.-prakt. konf. s mezhdunarod. uchastiem k Vsemirnomu dnyu zdorovya 2018 g., posvyaschennoi vseobschemu okhvatu uslugami zdravookhraneniya i 70-letiyu VOZ (Kiev, 2018), 161-163

[2] T. Kohonen, “The self-organizing map”, Neurocomputing, 21:1 (1998), 1-6 | DOI | MR | Zbl

[3] D.P. Kingma, Ba J. Adam, A method for stochastic optimization, 2014, arXiv: 1412.6980 | MR | Zbl

[4] V.V. Ruanet, E.Z. Kochieva, N.N. Ryzhova, “The use of a self-organizing feature map for the treatment of the results of RAPD and ISSR analyses in studies on the genomic polymorphism in the genus Capsicum L”, Russian Journal of Genetics, 41:2 (2005), 202-210 | DOI

[5] V.V. Ruanet, A.M. Kudryavtsev, S.Y. Dadashev, “The use of artificial neural networks for automatic analysis and genetic identification of gliadin electrophoretic spectra in durum wheat”, Russian Journal of Genetics, 37:10 (2001), 1207 - 1212 | DOI

[6] K.S. Kurochka, K.A. Panarin, “Algorithm for real-time binary classification of adenomas and norms images obtained by confocal microscopy”, 2020 International Conference Mechatronic Systems and Materials (MSM), 2020, 1-5 | DOI

[7] K. Jensen et al., “Classification of potato varieties using isoelectrophoretic focusing patterns, neural nets, and statistical methods”, Journal of agricultural and food chemistry, 45:1 (1997), 158-161 | DOI

[8] A.R. Eduardo, H.N. Marcello, M.R. Rangaraj, “Detection of Vertebral Plateaus in Lateral Lumbar Spinal X-ray Images with Gabor Filters”, 32th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2010, 4052-4055 | DOI

[9] H. Mobahi, S. Rao, A. Yang, S. Sastry, Y. Ma, “Segmentation of Natural Images by Texture and Boundary Compression”, International Journal of Computer Vision, 95 (2011), 86-98 | DOI

[10] R. Ohlander, K. Price, D.R. Raj, “Picture Segmentation Using a Recursive Region Splitting Method”, Computer Graphics and Image Processing, 8:3 (1978), 313-333 | DOI

[11] J. A. Canny, Computational Approach to Edge Detection, IEEE, 1986, 20 pp.

[12] J. Hurtado-Aviles, J. Roca-González, K.S. Kurochka, J.M. Sanz-Mengibar, F. Santonja-Medina, “Developing of a Mathematical Model to Perform Measurements of Axial Vertebral Rotation on Computer-Aided and Automated Diagnosis Systems, Using Raimondi's Method”, Radiology Research and Practice, 2021 (2021) | DOI

[13] K.S. Kurochka, K.A. Panarin, “Algorithm of Definition of Mutual Ar-rangement of L1-L5 Vertebrae on X-ray Images”, Optical Memory and Neural Networks, 27:3 (2018), 161-169 | DOI

[14] R. Gonsales, R. Vuds, Tsifrovaya obrabotka izobrazhenii, Tekhnosferab, M., 2012, 1104 pp.

[15] V.S. Kamyshnikov, Spravochnik po kliniko-biokhimicheskim issledovaniyam i laboratornoi diagnostike, MEDpress-inform, M., 2009, 896 pp.

[16] T. Elsken, B. Staffler, J.H. Metzen, F. Hutter, “Meta-Learning of Neural Architectures for Few-Shot Learning”, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 2021, arXiv: 1911.11090 | MR | Zbl