Simulation of the influence of thermal expansion on the thermal conductivity coefficient of a closed-pore material
Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 48-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

The effect of thermal expansion of the matrix material on the effective thermal conductivity coefficient of a closed-cell material is examined using direct numerical simulation. Computational experiments have been performed. An increase in the thermal conductivity coefficient of the composite material was established depending on the heat treatment time.
Keywords: effective thermal conductivity coefficient, mathematical model, grid methods, computational experiment.
Mots-clés : thermal expansion coefficient
@article{PFMT_2024_3_a8,
     author = {A. N. Aulas},
     title = {Simulation of the influence of thermal expansion on the thermal conductivity coefficient of a closed-pore material},
     journal = {Problemy fiziki, matematiki i tehniki},
     pages = {48--53},
     publisher = {mathdoc},
     number = {3},
     year = {2024},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PFMT_2024_3_a8/}
}
TY  - JOUR
AU  - A. N. Aulas
TI  - Simulation of the influence of thermal expansion on the thermal conductivity coefficient of a closed-pore material
JO  - Problemy fiziki, matematiki i tehniki
PY  - 2024
SP  - 48
EP  - 53
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PFMT_2024_3_a8/
LA  - ru
ID  - PFMT_2024_3_a8
ER  - 
%0 Journal Article
%A A. N. Aulas
%T Simulation of the influence of thermal expansion on the thermal conductivity coefficient of a closed-pore material
%J Problemy fiziki, matematiki i tehniki
%D 2024
%P 48-53
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PFMT_2024_3_a8/
%G ru
%F PFMT_2024_3_a8
A. N. Aulas. Simulation of the influence of thermal expansion on the thermal conductivity coefficient of a closed-pore material. Problemy fiziki, matematiki i tehniki, no. 3 (2024), pp. 48-53. http://geodesic.mathdoc.fr/item/PFMT_2024_3_a8/

[1] B.A. Lyukshin, S.V. Shilko, Yu.K. Mashkov i dr., Dispersno-napolnennye polimernye kompozity tekhnicheskogo i meditsinskogo naznacheniya, Izdatelstvo SO RAN, Novosibirsk, 2017, 311 pp.

[2] V.S. Zarubin, Inzhenernye metody resheniya zadach teploprovodnosti, Energoatomizdat, M., 1983, 328 pp.

[3] A.V. Nikitin, V.A. Liopo, S.V. Avdeichik, V.A. Struk, “Modelnye predstavleniya o teploperenose v polimernykh nanokompozitakh”, Prikladnaya matematika i fizika, 5:176 (2014), 150–160

[4] G.F. Gromyko, N.P. Matsuka, A.F. Ilyuschenko, A.V. Leshok, “Chislennoe issledovanie teplofizicheskikh svoistv kompozitsionnogo poroshkovogo materiala”, Sbornik «Poroshkovaya metallurgiya», 2020, no. 43, 132–139

[5] A.N. Avlas, “Vliyanie dobavok krupnykh komponent grafita na effektivnyi koeffitsient teploprovodnosti friktsionnykh kompozitsionnykh pokrytii na osnove medi”, XX Mezhdunarodnaya nauchnaya konferentsiya molodykh uchenykh «Molodezh v nauke-2023», Materialy konferentsii, Minsk, 2023, 501–503

[6] A.N. Avlas, N.P. Matsuka, “Poluchenie koeffitsienta teploprovodnosti kompozitsionnykh materialov s ispolzovaniem chislennogo modelirovaniya”, Informatsionnye tekhnologii v promyshlennosti, logistike i sotsialnoi sfere, Tezisy dokladov, 2023, 710

[7] A.N. Avlas, “Chislennyi raschet effektivnogo koeffitsienta teploprovodnosti dispersno-napolnennykh kompozitsionnykh materialov”, Trudy instituta matematiki, 32:1 (2024), 91–102

[8] S.I. Novikova, Teplovoe rasshirenie tverdykh tel, Nauka, M., 1974, 295 pp.

[9] A.A. Samarskii, Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp.

[10] V.S. Chirkin, Teplofizicheskie svoistva materialov yadernoi tekhniki, Atomizdat, M., 1968, 485 pp.